Nonlinear * -Lie higher derivations of standard operator algebras

Mohammad Ashraf; Shakir Ali; Bilal Ahmad Wani

Communications in Mathematics (2018)

  • Volume: 26, Issue: 1, page 15-29
  • ISSN: 1804-1388

Abstract

top
Let be an infinite-dimensional complex Hilbert space and 𝔄  be a standard operator algebra on which is closed under the adjoint operation. It is shown that every nonlinear * -Lie higher derivation 𝒟 = { δ n } n of 𝔄 is automatically an additive higher derivation on 𝔄 . Moreover, 𝒟 = { δ n } n is an inner * -higher derivation.

How to cite

top

Ashraf, Mohammad, Ali, Shakir, and Wani, Bilal Ahmad. "Nonlinear $\ast $-Lie higher derivations of standard operator algebras." Communications in Mathematics 26.1 (2018): 15-29. <http://eudml.org/doc/294361>.

@article{Ashraf2018,
abstract = {Let $\mathcal \{H\}$ be an infinite-dimensional complex Hilbert space and $\mathfrak \{A\}$ be a standard operator algebra on $\mathcal \{H\}$ which is closed under the adjoint operation. It is shown that every nonlinear $\ast $-Lie higher derivation $\mathcal \{D\}=\lbrace \{\delta _n\}\rbrace _\{n\in \mathbb \{N\}\}$ of $\mathfrak \{A\}$ is automatically an additive higher derivation on $\mathfrak \{A\}$. Moreover, $\mathcal \{D\}=\lbrace \{\delta _n\}\rbrace _\{n\in \mathbb \{N\}\}$ is an inner $\ast $-higher derivation.},
author = {Ashraf, Mohammad, Ali, Shakir, Wani, Bilal Ahmad},
journal = {Communications in Mathematics},
keywords = {Nonlinear $\ast $-Lie derivation; nonlinear $\ast $-Lie higher derivation; additive $\ast $-higher derivation; standard operator algebra},
language = {eng},
number = {1},
pages = {15-29},
publisher = {University of Ostrava},
title = {Nonlinear $\ast $-Lie higher derivations of standard operator algebras},
url = {http://eudml.org/doc/294361},
volume = {26},
year = {2018},
}

TY - JOUR
AU - Ashraf, Mohammad
AU - Ali, Shakir
AU - Wani, Bilal Ahmad
TI - Nonlinear $\ast $-Lie higher derivations of standard operator algebras
JO - Communications in Mathematics
PY - 2018
PB - University of Ostrava
VL - 26
IS - 1
SP - 15
EP - 29
AB - Let $\mathcal {H}$ be an infinite-dimensional complex Hilbert space and $\mathfrak {A}$ be a standard operator algebra on $\mathcal {H}$ which is closed under the adjoint operation. It is shown that every nonlinear $\ast $-Lie higher derivation $\mathcal {D}=\lbrace {\delta _n}\rbrace _{n\in \mathbb {N}}$ of $\mathfrak {A}$ is automatically an additive higher derivation on $\mathfrak {A}$. Moreover, $\mathcal {D}=\lbrace {\delta _n}\rbrace _{n\in \mathbb {N}}$ is an inner $\ast $-higher derivation.
LA - eng
KW - Nonlinear $\ast $-Lie derivation; nonlinear $\ast $-Lie higher derivation; additive $\ast $-higher derivation; standard operator algebra
UR - http://eudml.org/doc/294361
ER -

References

top
  1. Brešar, M., 10.1090/S0002-9947-1993-1069746-X, Trans. Amer. Math. Soc., 335, 2, 1993, 525-546, (1993) MR1069746DOI10.1090/S0002-9947-1993-1069746-X
  2. Chen, L., Zhang, J. H., 10.1080/03081080701688119, Linear Multilinear Algebra, 56, 6, 2008, 725-730, (2008) MR2457697DOI10.1080/03081080701688119
  3. Ferrero, M., Haetinger, C., 10.1081/AGB-120003471, Comm. Algebra, 30, 2002, 2321-2333, (2002) Zbl1010.16028MR1904640DOI10.1081/AGB-120003471
  4. Jing, Wu, Nonlinear * -Lie derivations of standard operator algebras, Quaestiones Mathematicae, 39, 8, 2016, 1037-1046, (2016) MR3589132
  5. Jing, W., Lu, F., 10.1080/03081087.2011.576343, Linear Multilinear Algebra, 60, 2012, 167-180, (2012) MR2876765DOI10.1080/03081087.2011.576343
  6. Lu, F. Y., Jing, W., 10.1016/j.laa.2009.07.026, Linear Algebra Appl., 432, 1, 2010, 89-99, (2010) MR2566460DOI10.1016/j.laa.2009.07.026
  7. III, W. S. Martindale, 10.1307/mmj/1028999091, Michigan Math. J., 11, 1964, 183-187, (1964) MR0166234DOI10.1307/mmj/1028999091
  8. Mires, C. R., 10.1215/S0012-7094-73-04032-5, Duke Math. J., 40, 1973, 403-409, (1973) MR0315466DOI10.1215/S0012-7094-73-04032-5
  9. Nowicki, A., Inner derivations of higher orders, Tsukuba J. Math., 8, 2, 1984, 219-225, (1984) MR0767958
  10. Qi, X. F., Hou, J. C., Lie higher derivations on nest algebras, Commun. Math. Res., 26, 2, 2010, 131-143, (2010) MR2662638
  11. Qi, X. F., Hou, J. C., 10.1080/00927872.2010.512588, Comm. Algebra, 39, 10, 2011, 3824-3835, (2011) MR2845604DOI10.1080/00927872.2010.512588
  12. Šemrl, P., 10.1215/ijm/1255987893, Illinois J. Math., 35, 1991, 234-240, (1991) MR1091440DOI10.1215/ijm/1255987893
  13. Wei, F., Xiao, Z. K., 10.1016/j.laa.2011.02.027, Linear Algebra Appl., 435, 2011, 1034-1054, (2011) MR2807218DOI10.1016/j.laa.2011.02.027
  14. Xiao, Z. K., Wei, F., Nonlinear Lie higher derivations on triangular algebras, Linear Multilinear Algebra, 60, 8, 2012, 979-994, (2012) MR2955278
  15. Yu, W., Zhang, J., 10.1016/j.laa.2009.12.042, Linear Algebra Appl., 432, 11, 2010, 2953-2960, (2010) MR2639258DOI10.1016/j.laa.2009.12.042
  16. Yu, W., Zhang, J., 10.1016/j.laa.2012.05.032, Linear Algebra Appl., 437, 2012, 1979-1991, (2012) MR2950465DOI10.1016/j.laa.2012.05.032
  17. Zhang, F., Qi, X., Zhang, J., Nonlinear * -Lie higher derivations on factor von Neumann algebras, Bull. Iranian Math. Soc., 42, 3, 2016, 659-678, (2016) MR3518210
  18. Zhang, F., Zhang, J., Nonlinear Lie derivations on factor von Neumann algebras, Acta Mathematica Sinica. (Chin. Ser), 54, 5, 2011, 791-802, (2011) MR2918674

NotesEmbed ?

top

You must be logged in to post comments.