Invariant symbolic calculus for compact Lie groups

Benjamin Cahen

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 3, page 139-155
  • ISSN: 0044-8753

Abstract

top
We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group.

How to cite

top

Cahen, Benjamin. "Invariant symbolic calculus for compact Lie groups." Archivum Mathematicum 055.3 (2019): 139-155. <http://eudml.org/doc/294373>.

@article{Cahen2019,
abstract = {We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group.},
author = {Cahen, Benjamin},
journal = {Archivum Mathematicum},
keywords = {compact Lie group; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization},
language = {eng},
number = {3},
pages = {139-155},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invariant symbolic calculus for compact Lie groups},
url = {http://eudml.org/doc/294373},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Invariant symbolic calculus for compact Lie groups
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 3
SP - 139
EP - 155
AB - We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group.
LA - eng
KW - compact Lie group; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization
UR - http://eudml.org/doc/294373
ER -

References

top
  1. Ali, S.T., Englis, M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (4) (2005), 391–490. (2005) Zbl1075.81038MR2151954DOI10.1142/S0129055X05002376
  2. Arazy, J., Upmeier, H., Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. (2002) MR1984098
  3. Arazy, J., Upmeier, H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, pp. 151–211. (2002) MR1943284
  4. Arnal, D., Cahen, M., Gutt, S., Representations of compact Lie groups and quantization by deformation, Acad. R. Belg. Bull. Cl. Sc. 3e série LXXIV 45 (1988), 123–140. (1988) MR1027456
  5. Bekka, M.B., de la Harpe, P., 10.1016/S0723-0869(03)80014-2, Expo. Math. 21 (2) (2003), 115–149. (2003) MR1978060DOI10.1016/S0723-0869(03)80014-2
  6. Berezin, F.A., Quantization, Math. USSR Izv. 8 (5) (1974), 1109–1165. (1974) Zbl0312.53049MR0395610
  7. Berezin, F.A., 10.1070/IM1975v009n02ABEH001480, Math. USSR Izv. 9 (2) (1975), 341–379. (1975) DOI10.1070/IM1975v009n02ABEH001480
  8. Brif, C., Mann, A., 10.1103/PhysRevA.59.971, Phys. Rev. A 59 (2) (1999), 971–987. (1999) MR1679730DOI10.1103/PhysRevA.59.971
  9. Cahen, B., 10.1007/BF02807403, J. Anal. Math. 97 (2005), 83–101. (2005) MR2274974DOI10.1007/BF02807403
  10. Cahen, B., 10.7146/math.scand.a-15106, Math. Scand. 105 (2009), 66–84. (2009) Zbl1183.22006MR2549798DOI10.7146/math.scand.a-15106
  11. Cahen, B., 10.1007/s12215-010-0026-y, Rend. Circ. Mat. Palermo 59 (2010), 331–354. (2010) Zbl1218.22008MR2745515DOI10.1007/s12215-010-0026-y
  12. Cahen, B., 10.4171/RSMUP/129-16, Rend. Sem. Mat. Univ. Padova 129 (2013), 277–297. (2013) MR3090642DOI10.4171/RSMUP/129-16
  13. Cahen, B., 10.4171/RSMUP/136-7, Rend. Sem. Mat. Univ. Padova 136 (2016), 69–93. (2016) MR3593544DOI10.4171/RSMUP/136-7
  14. Cahen, M., Gutt, S., Rawnsley, J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. (1990) MR1094730DOI10.1016/0393-0440(90)90019-Y
  15. Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C., 10.1088/0305-4470/23/6/015, J. Phys. A: Math. Gen. 23 (1990), 901–933. (1990) Zbl0706.60108MR1048769DOI10.1088/0305-4470/23/6/015
  16. Englis, M., 10.1090/S0002-9947-08-04653-9, Trans. Amer. Math. Soc. 361 (2009), 1173–1188. (2009) MR2457394DOI10.1090/S0002-9947-08-04653-9
  17. Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C., 10.1063/1.528967, J. Math. Phys. 31 (1990), 2664–2671. (1990) MR1075750DOI10.1063/1.528967
  18. Folland, B., Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. (1989) Zbl0682.43001MR0983366
  19. Gracia-Bondìa, J.M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics, Amherst, MA, 1990, Contemp. Math., 134, Amer. Math. Soc., Providence, RI, 1992, pp. 93–114. (1990) MR1187280
  20. Gracia-Bondìa, J.M., Vàrilly, J.C., 10.1016/0003-4916(89)90262-5, Ann. Physics 190 (1989), 107–148. (1989) MR0994048DOI10.1016/0003-4916(89)90262-5
  21. Helgason, S., 10.1090/gsm/034, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, Rhode Island, 2001. (2001) Zbl0993.53002MR1834454DOI10.1090/gsm/034
  22. Kirillov, A.A., 10.1090/gsm/064, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, Rhode Island, 2004. (2004) MR2069175DOI10.1090/gsm/064
  23. Kobayashi, T., Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, Representation theory and automorphic forms, vol. 255, Birkhäuser Boston, Boston, MA, Progr. Math. ed., 2008, pp. 45–109. (2008) MR2369496
  24. Kostant, B., Quantization and unitary representations, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin, Heidelberg, New-York, Modern Analysis and Applications ed., 1970, pp. 87–207. (1970) Zbl0223.53028MR0294568
  25. Neeb, K-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter, Berlin, New-York, 2000. (2000) MR1740617
  26. Nomura, T., Berezin transforms and group representations, J. Lie Theory 8 (1998), 433–440. (1998) MR1650386
  27. Ørsted, B., Zhang, G., 10.1512/iumj.1994.43.43023, Indiana Univ. Math. J. 43 (2) (1994), 551–583. (1994) MR1291529DOI10.1512/iumj.1994.43.43023
  28. Stembridge, J.R., 10.1090/S1088-4165-03-00150-X, Representation Theory 7 (2003), 404–439. (2003) MR2017064DOI10.1090/S1088-4165-03-00150-X
  29. Stratonovich, R.L., On distributions in representation space, Soviet Physics. JETP 4 (1957), 891–898. (1957) MR0088173
  30. Unterberger, A., Upmeier, H., 10.1007/BF02101491, Commun. Math. Phys. 164 (3) (1994), 563–597. (1994) Zbl0843.32019MR1291245DOI10.1007/BF02101491
  31. Wallach, N.R., Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, Inc., 1973. (1973) MR0498996
  32. Wildberger, N.J., 10.1017/S1446788700034741, J. Austral. Math. Soc. A 56 (1994), 64–116. (1994) MR1250994DOI10.1017/S1446788700034741
  33. Zhang, G., 10.1007/s002290050109, Manuscripta Math. 97 (1998), 371–388. (1998) Zbl0920.22008MR1654800DOI10.1007/s002290050109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.