Invariant symbolic calculus for compact Lie groups
Archivum Mathematicum (2019)
- Volume: 055, Issue: 3, page 139-155
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCahen, Benjamin. "Invariant symbolic calculus for compact Lie groups." Archivum Mathematicum 055.3 (2019): 139-155. <http://eudml.org/doc/294373>.
@article{Cahen2019,
abstract = {We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group.},
author = {Cahen, Benjamin},
journal = {Archivum Mathematicum},
keywords = {compact Lie group; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization},
language = {eng},
number = {3},
pages = {139-155},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invariant symbolic calculus for compact Lie groups},
url = {http://eudml.org/doc/294373},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Cahen, Benjamin
TI - Invariant symbolic calculus for compact Lie groups
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 3
SP - 139
EP - 155
AB - We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group.
LA - eng
KW - compact Lie group; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization
UR - http://eudml.org/doc/294373
ER -
References
top- Ali, S.T., Englis, M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (4) (2005), 391–490. (2005) Zbl1075.81038MR2151954DOI10.1142/S0129055X05002376
- Arazy, J., Upmeier, H., Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. (2002) MR1984098
- Arazy, J., Upmeier, H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, pp. 151–211. (2002) MR1943284
- Arnal, D., Cahen, M., Gutt, S., Representations of compact Lie groups and quantization by deformation, Acad. R. Belg. Bull. Cl. Sc. 3e série LXXIV 45 (1988), 123–140. (1988) MR1027456
- Bekka, M.B., de la Harpe, P., 10.1016/S0723-0869(03)80014-2, Expo. Math. 21 (2) (2003), 115–149. (2003) MR1978060DOI10.1016/S0723-0869(03)80014-2
- Berezin, F.A., Quantization, Math. USSR Izv. 8 (5) (1974), 1109–1165. (1974) Zbl0312.53049MR0395610
- Berezin, F.A., 10.1070/IM1975v009n02ABEH001480, Math. USSR Izv. 9 (2) (1975), 341–379. (1975) DOI10.1070/IM1975v009n02ABEH001480
- Brif, C., Mann, A., 10.1103/PhysRevA.59.971, Phys. Rev. A 59 (2) (1999), 971–987. (1999) MR1679730DOI10.1103/PhysRevA.59.971
- Cahen, B., 10.1007/BF02807403, J. Anal. Math. 97 (2005), 83–101. (2005) MR2274974DOI10.1007/BF02807403
- Cahen, B., 10.7146/math.scand.a-15106, Math. Scand. 105 (2009), 66–84. (2009) Zbl1183.22006MR2549798DOI10.7146/math.scand.a-15106
- Cahen, B., 10.1007/s12215-010-0026-y, Rend. Circ. Mat. Palermo 59 (2010), 331–354. (2010) Zbl1218.22008MR2745515DOI10.1007/s12215-010-0026-y
- Cahen, B., 10.4171/RSMUP/129-16, Rend. Sem. Mat. Univ. Padova 129 (2013), 277–297. (2013) MR3090642DOI10.4171/RSMUP/129-16
- Cahen, B., 10.4171/RSMUP/136-7, Rend. Sem. Mat. Univ. Padova 136 (2016), 69–93. (2016) MR3593544DOI10.4171/RSMUP/136-7
- Cahen, M., Gutt, S., Rawnsley, J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. (1990) MR1094730DOI10.1016/0393-0440(90)90019-Y
- Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C., 10.1088/0305-4470/23/6/015, J. Phys. A: Math. Gen. 23 (1990), 901–933. (1990) Zbl0706.60108MR1048769DOI10.1088/0305-4470/23/6/015
- Englis, M., 10.1090/S0002-9947-08-04653-9, Trans. Amer. Math. Soc. 361 (2009), 1173–1188. (2009) MR2457394DOI10.1090/S0002-9947-08-04653-9
- Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C., 10.1063/1.528967, J. Math. Phys. 31 (1990), 2664–2671. (1990) MR1075750DOI10.1063/1.528967
- Folland, B., Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. (1989) Zbl0682.43001MR0983366
- Gracia-Bondìa, J.M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics, Amherst, MA, 1990, Contemp. Math., 134, Amer. Math. Soc., Providence, RI, 1992, pp. 93–114. (1990) MR1187280
- Gracia-Bondìa, J.M., Vàrilly, J.C., 10.1016/0003-4916(89)90262-5, Ann. Physics 190 (1989), 107–148. (1989) MR0994048DOI10.1016/0003-4916(89)90262-5
- Helgason, S., 10.1090/gsm/034, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, Rhode Island, 2001. (2001) Zbl0993.53002MR1834454DOI10.1090/gsm/034
- Kirillov, A.A., 10.1090/gsm/064, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, Rhode Island, 2004. (2004) MR2069175DOI10.1090/gsm/064
- Kobayashi, T., Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, Representation theory and automorphic forms, vol. 255, Birkhäuser Boston, Boston, MA, Progr. Math. ed., 2008, pp. 45–109. (2008) MR2369496
- Kostant, B., Quantization and unitary representations, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin, Heidelberg, New-York, Modern Analysis and Applications ed., 1970, pp. 87–207. (1970) Zbl0223.53028MR0294568
- Neeb, K-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter, Berlin, New-York, 2000. (2000) MR1740617
- Nomura, T., Berezin transforms and group representations, J. Lie Theory 8 (1998), 433–440. (1998) MR1650386
- Ørsted, B., Zhang, G., 10.1512/iumj.1994.43.43023, Indiana Univ. Math. J. 43 (2) (1994), 551–583. (1994) MR1291529DOI10.1512/iumj.1994.43.43023
- Stembridge, J.R., 10.1090/S1088-4165-03-00150-X, Representation Theory 7 (2003), 404–439. (2003) MR2017064DOI10.1090/S1088-4165-03-00150-X
- Stratonovich, R.L., On distributions in representation space, Soviet Physics. JETP 4 (1957), 891–898. (1957) MR0088173
- Unterberger, A., Upmeier, H., 10.1007/BF02101491, Commun. Math. Phys. 164 (3) (1994), 563–597. (1994) Zbl0843.32019MR1291245DOI10.1007/BF02101491
- Wallach, N.R., Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, Inc., 1973. (1973) MR0498996
- Wildberger, N.J., 10.1017/S1446788700034741, J. Austral. Math. Soc. A 56 (1994), 64–116. (1994) MR1250994DOI10.1017/S1446788700034741
- Zhang, G., 10.1007/s002290050109, Manuscripta Math. 97 (1998), 371–388. (1998) Zbl0920.22008MR1654800DOI10.1007/s002290050109
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.