Berezin quantization and holomorphic representations

Benjamin Cahen

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 277-298
  • ISSN: 0041-8994

How to cite

top

Cahen, Benjamin. "Berezin quantization and holomorphic representations." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 277-298. <http://eudml.org/doc/275113>.

@article{Cahen2013,
author = {Cahen, Benjamin},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Weyl correspondence; Berezin quantization; Stratonovich-Weyl map, quasi-Hermitian Lie group; unitary representation; reductive group},
language = {eng},
pages = {277-298},
publisher = {Seminario Matematico of the University of Padua},
title = {Berezin quantization and holomorphic representations},
url = {http://eudml.org/doc/275113},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Berezin quantization and holomorphic representations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 277
EP - 298
LA - eng
KW - Weyl correspondence; Berezin quantization; Stratonovich-Weyl map, quasi-Hermitian Lie group; unitary representation; reductive group
UR - http://eudml.org/doc/275113
ER -

References

top
  1. [1] S. T. Ali - M. Englis, Quantization methods: a guide for physicists and analysts, Rev. Math. Phys. 17, 4 (2005), pp. 391–490. Zbl1075.81038MR2151954
  2. [2] J. Arazy - H. Upmeier, Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13, no 3-4 (2002), pp. 165–181. MR1984098
  3. [3] J. Arazy - H. Upmeier, Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function spaces, interpolation theory and related topics (Lund, 2000), pp. 151–211, de Gruyter, Berlin, 2002. MR1943284
  4. [4] D. Arnal - J.-C. Cortet, Nilpotent Fourier Transform and Applications, Lett. Math. Phys.9 (1985), pp. 25–34. Zbl0616.46041MR774736
  5. [5] L. Auslander - B. Kostant, Polarization and Unitary Representations of Solvable lie Groups, Invent. Math.14 (1971), pp. 255–354. Zbl0233.22005MR293012
  6. [6] I. Beltiţă - D. Beltiţă, Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups, Ann. Global Anal. Geom. 36, 3 (2009), pp. 293–322. Zbl1180.47034MR2544305
  7. [7] P. Bernat - N. Conze - M. Duflo - M. Levy-Nahas - M. Rais - P. Renouard - M. Vergne, Representations des groupes de Lie résolubles, Dunod, Paris 1972. MR444836
  8. [8] F. A. Berezin, Quantization, Math. USSR Izv. 8, 5 (1974), pp. 1109–1165. MR395610
  9. [9] F. A. Berezin, Quantization in complex symmetric domains, Math. USSR Izv. 9, 2 (1975), pp. 341–379. Zbl0324.53049
  10. [10] C. Brif - A. Mann, Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries, Phys. Rev. A 59, 2 (1999), pp. 971–987. MR1679730
  11. [11] B. Cahen, Deformation Program for Principal Series Representations, Lett. Math. Phys.36 (1996), pp. 65–75. Zbl0843.22020MR1371298
  12. [12] B. Cahen, Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C. R. Acad. Sci. Paris t. 325, série I (1997), pp. 803–806. Zbl0883.22016MR1483721
  13. [13] B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl.25 (2007), pp. 177–190. Zbl1117.81087MR2311733
  14. [14] B. Cahen, Weyl quantization for principal series, Beiträge Algebra Geom. 48, 1 (2007), pp. 175–190. Zbl1134.22010MR2326408
  15. [15] B. Cahen, Contraction of compact semisimple Lie groups via Berezin quantization, Illinois J. Math. 53, 1 (2009), pp. 265–288. Zbl1185.22008MR2584946
  16. [16] B. Cahen, Berezin quantization on generalized flag manifolds, Math. Scand.105 (2009), pp. 66–84. Zbl1183.22006MR2549798
  17. [17] B. Cahen, Contraction of discrete series via Berezin quantization, J. Lie Theory, 19 (2009), pp. 291–310. Zbl1185.22007MR2572131
  18. [18] B. Cahen, Berezin quantization for discrete series, Beiträge Algebra Geom.51 (2010), pp. 301–311. Zbl05727220MR2682458
  19. [19] B. Cahen, Stratonovich-Weyl correspondence for compact semisimple Lie groups, Rend. Circ. Mat. Palermo, 59 (2010), pp. 331–354. Zbl1218.22008MR2745515
  20. [20] B. Cahen, Stratonovich-Weyl correspondence for discrete series representations, Arch. Math. (Brno), 47 (2011), pp. 41–58. MR2813546
  21. [21] B. Cahen, Weyl quantization for the semi-direct product of a compact Lie group and a vector space, Comment. Math. Univ. Carolin. 50, 3 (2009), pp. 325–347. Zbl1212.81015MR2573408
  22. [22] B. Cahen, Weyl quantization for Cartan motion groups, Comment. Math. Univ. Carolin. 52, 1 (2011), pp. 127–137. Zbl1240.22010MR2828363
  23. [23] M. Cahen - S. Gutt - J. Rawnsley, Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization, J. Geom. Phys. 7 (1990), pp. 45–62. Zbl0719.53044MR1094730
  24. [24] J. F. Cariñena - J. M. Gracia-Bondìa - J. C. Vàrilly, Relativistic quantum kinematics in the Moyal representation, J. Phys. A: Math. Gen. 23 (1990), pp. 901–933. Zbl0706.60108
  25. [25] P. Cotton - A. H. Dooley, Contraction of an Adapted Functional Calculus, J. Lie Theory, 7 (1997), pp. 147–164. Zbl0882.22015MR1473162
  26. [26] M. Davidson - G. Òlafsson - G. Zhang, Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials, J. Funct. Anal.204 (2003), pp. 157–195. Zbl1035.32014MR2004748
  27. [27] H. Figueroa - J. M. Gracia-Bondìa - J. C. Vàrilly, Moyal quantization with compact symmetry groups and noncommutative analysis, J. Math. Phys.31 (1990), pp. 2664–2671. Zbl0753.43002MR1075750
  28. [28] B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. Zbl0682.43001MR983366
  29. [29] J. M. Gracia-Bondìa, Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), pp. 93–114, Contemp. Math., 134, Amer. Math. Soc., Providence, RI, 1992. Zbl0788.58024MR1187280
  30. [30] J. M. Gracia-Bondìa - J. C. Vàrilly, The Moyal Representation for Spin, Ann. Physics, 190 (1989), pp. 107–148. Zbl0652.46028MR994048
  31. [31] M. Gotay, Obstructions to Quantization, in: Mechanics: From Theory to Computation (Essays in Honor of Juan-Carlos Simo), J. Nonlinear Science Editors, Springer New-York, 2000, pp. 271–316. MR1766355
  32. [32] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, Rhode Island 2001. MR1834454
  33. [33] A. W. Knapp, Representation theory of semi-simple groups. An overview based on examples, Princeton Math. Series t. 36 (1986). Zbl0604.22001MR855239
  34. [34] A. A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics Vol. 64, American Mathematical Society, Providence, Rhode Island, 2004. MR2069175
  35. [35] B. Kostant, Quantization and unitary representations, in: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New-York, 1970, pp. 87–207. MR294568
  36. [36] K-H. Neeb, Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28, Walter de Gruyter, Berlin, New-York 2000. Zbl0964.22004MR1740617
  37. [37] T. Nomura, Berezin Transforms and Group representations, J. Lie Theory, 8 (1998), pp. 433–440. Zbl0919.43008MR1650386
  38. [38] B. Ørsted - G. Zhang, Weyl Quantization and Tensor Products of Fock and Bergman Spaces, Indiana Univ. Math. J. 43, 2 (1994), pp. 551–583. Zbl0805.46053MR1291529
  39. [39] J. Peetre - G. Zhang, A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math. 43 (1992), pp. 273–301. Zbl0836.43018MR1252736
  40. [40] N. V. Pedersen, Matrix coefficients and a Weyl correspondence for nilpotent Lie groups, Invent. Math.118 (1994), pp. 1–36. Zbl0848.22016MR1288465
  41. [41] I. Satake, Algebraic structures of symmetric domains, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, 1971. MR591460
  42. [42] R. L. Stratonovich, On distributions in representation space, Soviet Physics. JETP, 4 (1957), pp. 891–898. Zbl0082.19302MR88173
  43. [43] A. Unterberger - H. Upmeier, Berezin transform and invariant differential operators, Commun. Math. Phys. 164, 3 (1994), pp. 563–597. Zbl0843.32019MR1291245
  44. [44] N. J. Wildberger, Convexity and unitary representations of a nilpotent Lie group, Invent. Math.89 (1989), pp. 281–292. Zbl0684.22005MR1016265
  45. [45] G. Zhang, Berezin transform on compact Hermitian symmetric spaces, Manuscripta Math.97 (1998), pp. 371–388. Zbl0920.22008MR1654800

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.