Berezin quantization and holomorphic representations
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 129, page 277-298
- ISSN: 0041-8994
Access Full Article
topHow to cite
topCahen, Benjamin. "Berezin quantization and holomorphic representations." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 277-298. <http://eudml.org/doc/275113>.
@article{Cahen2013,
author = {Cahen, Benjamin},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Weyl correspondence; Berezin quantization; Stratonovich-Weyl map, quasi-Hermitian Lie group; unitary representation; reductive group},
language = {eng},
pages = {277-298},
publisher = {Seminario Matematico of the University of Padua},
title = {Berezin quantization and holomorphic representations},
url = {http://eudml.org/doc/275113},
volume = {129},
year = {2013},
}
TY - JOUR
AU - Cahen, Benjamin
TI - Berezin quantization and holomorphic representations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 277
EP - 298
LA - eng
KW - Weyl correspondence; Berezin quantization; Stratonovich-Weyl map, quasi-Hermitian Lie group; unitary representation; reductive group
UR - http://eudml.org/doc/275113
ER -
References
top- [1] S. T. Ali - M. Englis, Quantization methods: a guide for physicists and analysts, Rev. Math. Phys. 17, 4 (2005), pp. 391–490. Zbl1075.81038MR2151954
- [2] J. Arazy - H. Upmeier, Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13, no 3-4 (2002), pp. 165–181. MR1984098
- [3] J. Arazy - H. Upmeier, Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function spaces, interpolation theory and related topics (Lund, 2000), pp. 151–211, de Gruyter, Berlin, 2002. MR1943284
- [4] D. Arnal - J.-C. Cortet, Nilpotent Fourier Transform and Applications, Lett. Math. Phys.9 (1985), pp. 25–34. Zbl0616.46041MR774736
- [5] L. Auslander - B. Kostant, Polarization and Unitary Representations of Solvable lie Groups, Invent. Math.14 (1971), pp. 255–354. Zbl0233.22005MR293012
- [6] I. Beltiţă - D. Beltiţă, Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups, Ann. Global Anal. Geom. 36, 3 (2009), pp. 293–322. Zbl1180.47034MR2544305
- [7] P. Bernat - N. Conze - M. Duflo - M. Levy-Nahas - M. Rais - P. Renouard - M. Vergne, Representations des groupes de Lie résolubles, Dunod, Paris 1972. MR444836
- [8] F. A. Berezin, Quantization, Math. USSR Izv. 8, 5 (1974), pp. 1109–1165. MR395610
- [9] F. A. Berezin, Quantization in complex symmetric domains, Math. USSR Izv. 9, 2 (1975), pp. 341–379. Zbl0324.53049
- [10] C. Brif - A. Mann, Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries, Phys. Rev. A 59, 2 (1999), pp. 971–987. MR1679730
- [11] B. Cahen, Deformation Program for Principal Series Representations, Lett. Math. Phys.36 (1996), pp. 65–75. Zbl0843.22020MR1371298
- [12] B. Cahen, Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C. R. Acad. Sci. Paris t. 325, série I (1997), pp. 803–806. Zbl0883.22016MR1483721
- [13] B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl.25 (2007), pp. 177–190. Zbl1117.81087MR2311733
- [14] B. Cahen, Weyl quantization for principal series, Beiträge Algebra Geom. 48, 1 (2007), pp. 175–190. Zbl1134.22010MR2326408
- [15] B. Cahen, Contraction of compact semisimple Lie groups via Berezin quantization, Illinois J. Math. 53, 1 (2009), pp. 265–288. Zbl1185.22008MR2584946
- [16] B. Cahen, Berezin quantization on generalized flag manifolds, Math. Scand.105 (2009), pp. 66–84. Zbl1183.22006MR2549798
- [17] B. Cahen, Contraction of discrete series via Berezin quantization, J. Lie Theory, 19 (2009), pp. 291–310. Zbl1185.22007MR2572131
- [18] B. Cahen, Berezin quantization for discrete series, Beiträge Algebra Geom.51 (2010), pp. 301–311. Zbl05727220MR2682458
- [19] B. Cahen, Stratonovich-Weyl correspondence for compact semisimple Lie groups, Rend. Circ. Mat. Palermo, 59 (2010), pp. 331–354. Zbl1218.22008MR2745515
- [20] B. Cahen, Stratonovich-Weyl correspondence for discrete series representations, Arch. Math. (Brno), 47 (2011), pp. 41–58. MR2813546
- [21] B. Cahen, Weyl quantization for the semi-direct product of a compact Lie group and a vector space, Comment. Math. Univ. Carolin. 50, 3 (2009), pp. 325–347. Zbl1212.81015MR2573408
- [22] B. Cahen, Weyl quantization for Cartan motion groups, Comment. Math. Univ. Carolin. 52, 1 (2011), pp. 127–137. Zbl1240.22010MR2828363
- [23] M. Cahen - S. Gutt - J. Rawnsley, Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization, J. Geom. Phys. 7 (1990), pp. 45–62. Zbl0719.53044MR1094730
- [24] J. F. Cariñena - J. M. Gracia-Bondìa - J. C. Vàrilly, Relativistic quantum kinematics in the Moyal representation, J. Phys. A: Math. Gen. 23 (1990), pp. 901–933. Zbl0706.60108
- [25] P. Cotton - A. H. Dooley, Contraction of an Adapted Functional Calculus, J. Lie Theory, 7 (1997), pp. 147–164. Zbl0882.22015MR1473162
- [26] M. Davidson - G. Òlafsson - G. Zhang, Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials, J. Funct. Anal.204 (2003), pp. 157–195. Zbl1035.32014MR2004748
- [27] H. Figueroa - J. M. Gracia-Bondìa - J. C. Vàrilly, Moyal quantization with compact symmetry groups and noncommutative analysis, J. Math. Phys.31 (1990), pp. 2664–2671. Zbl0753.43002MR1075750
- [28] B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. Zbl0682.43001MR983366
- [29] J. M. Gracia-Bondìa, Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), pp. 93–114, Contemp. Math., 134, Amer. Math. Soc., Providence, RI, 1992. Zbl0788.58024MR1187280
- [30] J. M. Gracia-Bondìa - J. C. Vàrilly, The Moyal Representation for Spin, Ann. Physics, 190 (1989), pp. 107–148. Zbl0652.46028MR994048
- [31] M. Gotay, Obstructions to Quantization, in: Mechanics: From Theory to Computation (Essays in Honor of Juan-Carlos Simo), J. Nonlinear Science Editors, Springer New-York, 2000, pp. 271–316. MR1766355
- [32] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, Rhode Island 2001. MR1834454
- [33] A. W. Knapp, Representation theory of semi-simple groups. An overview based on examples, Princeton Math. Series t. 36 (1986). Zbl0604.22001MR855239
- [34] A. A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics Vol. 64, American Mathematical Society, Providence, Rhode Island, 2004. MR2069175
- [35] B. Kostant, Quantization and unitary representations, in: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New-York, 1970, pp. 87–207. MR294568
- [36] K-H. Neeb, Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28, Walter de Gruyter, Berlin, New-York 2000. Zbl0964.22004MR1740617
- [37] T. Nomura, Berezin Transforms and Group representations, J. Lie Theory, 8 (1998), pp. 433–440. Zbl0919.43008MR1650386
- [38] B. Ørsted - G. Zhang, Weyl Quantization and Tensor Products of Fock and Bergman Spaces, Indiana Univ. Math. J. 43, 2 (1994), pp. 551–583. Zbl0805.46053MR1291529
- [39] J. Peetre - G. Zhang, A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math. 43 (1992), pp. 273–301. Zbl0836.43018MR1252736
- [40] N. V. Pedersen, Matrix coefficients and a Weyl correspondence for nilpotent Lie groups, Invent. Math.118 (1994), pp. 1–36. Zbl0848.22016MR1288465
- [41] I. Satake, Algebraic structures of symmetric domains, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, 1971. MR591460
- [42] R. L. Stratonovich, On distributions in representation space, Soviet Physics. JETP, 4 (1957), pp. 891–898. Zbl0082.19302MR88173
- [43] A. Unterberger - H. Upmeier, Berezin transform and invariant differential operators, Commun. Math. Phys. 164, 3 (1994), pp. 563–597. Zbl0843.32019MR1291245
- [44] N. J. Wildberger, Convexity and unitary representations of a nilpotent Lie group, Invent. Math.89 (1989), pp. 281–292. Zbl0684.22005MR1016265
- [45] G. Zhang, Berezin transform on compact Hermitian symmetric spaces, Manuscripta Math.97 (1998), pp. 371–388. Zbl0920.22008MR1654800
Citations in EuDML Documents
top- Benjamin Cahen, Invariant symbolic calculus for compact Lie groups
- Benjamin Cahen, Formal deformations and principal series representations of and
- Benjamin Cahen, Invariant symbolic calculus for semidirect products
- Benjamin Cahen, Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group
- Benjamin Cahen, Stratonovich-Weyl correspondence for the Jacobi group
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.