Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
Mohamed Saad Bouh Elemine Vall; Ahmed Ahmed; Abdelfattah Touzani; Abdelmoujib Benkirane
Mathematica Bohemica (2018)
- Volume: 143, Issue: 3, page 225-249
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topElemine Vall, Mohamed Saad Bouh, et al. "Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form." Mathematica Bohemica 143.3 (2018): 225-249. <http://eudml.org/doc/294395>.
@article{ElemineVall2018,
abstract = {We prove the existence of solutions to nonlinear parabolic problems of the following type: \[ \{\left\lbrace \begin\{array\}\{ll\} \dfrac\{\partial b(u)\}\{\partial t\}+ A(u) = f + \{\rm div\}(\Theta (x; t; u))& \text\{in\}\ Q,\\ u(x; t) = 0 & \text\{on\}\ \partial \Omega \times [0; T],\\ b(u)(t = 0) = b(u\_0) & \text\{on\}\ \Omega , \end\{array\}\right.\} \]
where $b\colon \mathbb \{R\}\rightarrow \mathbb \{R\}$ is a strictly increasing function of class $\{\mathcal \{C\}\}^1$, the term \[ A(u) = -\{\rm div\} (a(x, t, u,\nabla u)) \]
is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, $\Theta \colon \Omega \times [0; T]\times \mathbb \{R\}\rightarrow \mathbb \{R\}$ is a Carathéodory, noncoercive function which satisfies the following condition: $\sup _\{|s|\le k\} |\Theta (\{\cdot \},\{\cdot \},s)| \in E_\{\psi \}(Q)$ for all $k > 0$, where $\psi $ is the Musielak complementary function of $\Theta $, and the second term $f$ belongs to $L^\{1\}(Q)$.},
author = {Elemine Vall, Mohamed Saad Bouh, Ahmed, Ahmed, Touzani, Abdelfattah, Benkirane, Abdelmoujib},
journal = {Mathematica Bohemica},
keywords = {inhomogeneous Musielak-Orlicz-Sobolev space; parabolic problems; Galerkin method},
language = {eng},
number = {3},
pages = {225-249},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form},
url = {http://eudml.org/doc/294395},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Elemine Vall, Mohamed Saad Bouh
AU - Ahmed, Ahmed
AU - Touzani, Abdelfattah
AU - Benkirane, Abdelmoujib
TI - Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 3
SP - 225
EP - 249
AB - We prove the existence of solutions to nonlinear parabolic problems of the following type: \[ {\left\lbrace \begin{array}{ll} \dfrac{\partial b(u)}{\partial t}+ A(u) = f + {\rm div}(\Theta (x; t; u))& \text{in}\ Q,\\ u(x; t) = 0 & \text{on}\ \partial \Omega \times [0; T],\\ b(u)(t = 0) = b(u_0) & \text{on}\ \Omega , \end{array}\right.} \]
where $b\colon \mathbb {R}\rightarrow \mathbb {R}$ is a strictly increasing function of class ${\mathcal {C}}^1$, the term \[ A(u) = -{\rm div} (a(x, t, u,\nabla u)) \]
is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, $\Theta \colon \Omega \times [0; T]\times \mathbb {R}\rightarrow \mathbb {R}$ is a Carathéodory, noncoercive function which satisfies the following condition: $\sup _{|s|\le k} |\Theta ({\cdot },{\cdot },s)| \in E_{\psi }(Q)$ for all $k > 0$, where $\psi $ is the Musielak complementary function of $\Theta $, and the second term $f$ belongs to $L^{1}(Q)$.
LA - eng
KW - inhomogeneous Musielak-Orlicz-Sobolev space; parabolic problems; Galerkin method
UR - http://eudml.org/doc/294395
ER -
References
top- Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H., 10.12988/ijma.2013.13130, Int. J. Math. Anal., Ruse 7 (2013), 1323-1340. (2013) Zbl1284.35216MR3053336DOI10.12988/ijma.2013.13130
- Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El, Nonlinear elliptic equations involving measure data in Musielak-Orlicz-Sobolev spaces, J. Abstr. Differ. Equ. Appl. 4 (2013), 43-57. (2013) Zbl1330.35136MR3064138
- Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El, Parabolic equations in Musielak-Orlicz-Sobolev spaces, Int. J. Anal. Appl. 4 (2014), 174-191. (2014) Zbl06657910MR3064138
- Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El, Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces, Bol. Soc. Paran. Mat. (3) 33 (2015), 193-223. (2015) MR3267308
- Khellou, M. Ait, Benkirane, A., Douiri, S. M., Existance of solutions for elliptic equations having naturel growth terms in Musielak-Orlicz spaces, J. Math. Comput. Sci. 4 (2014), 665-688. (2014)
- Azroul, E., Benboubker, M. B., Redwane, H., Yazough, C., Renormalized solutions for a class of nonlinear parabolic equations without sign condition involving nonstandard growth, An. Univ. Craiova, Ser. Mat. Inf. 41 (2014), 69-87. (2014) Zbl1324.35064MR3234476
- Azroul, E., Lekhlifi, M. El, Redwane, H., Touzani, A., Entropy solutions of nonlinear parabolic equations in Orlicz-Sobolev spaces, without sign condition and data, J. Nonlinear Evol. Equ. Appl. 2014 (2014), 101-130. (2014) Zbl1327.35217MR3322158
- Azroul, E., Hjiaj, H., Touzani, A., Existence and regularity of entropy solutions for strongly nonlinear -elliptic equations, Electron. J. Differ. Equ. 2013 (2013), Paper No. 68, 27 pages. (2013) Zbl1291.35044MR3040645
- Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L., An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. (1995) Zbl0866.35037MR1354907
- Benkirane, A., Val, M. Ould Mohamedhen, Some approximation properties in Musielak-Orlicz-Sobolev spaces, Thai. J. Math. 10 (2012), 371-381. (2012) Zbl1264.46024MR3001860
- Benkirane, A., Vally, M. Sidi El, 10.36045/bbms/1420071854, Bull. Belg. Math. Soc.-Simon Stevin 21 (2014), 787-811. (2014) Zbl1326.35142MR3298478DOI10.36045/bbms/1420071854
- Vall, M. S. B. Elemine, Ahmed, A., Touzani, A., Benkirane, A., 10.5269/bspm.v36i1.29440, Bol. Soc. Paran. Math. (3) 36 (2018), 125-150. (2018) MR3632476DOI10.5269/bspm.v36i1.29440
- Elmahi, A., Meskine, D., 10.1112/S0024610705006630, J. Lond. Math. Soc., II. Ser. 72 (2005), 410-428. (2005) Zbl1108.35082MR2156661DOI10.1112/S0024610705006630
- Elmahi, A., Meskine, D., 10.1016/j.na.2004.08.018, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 1-35. (2005) Zbl1082.35085MR2101516DOI10.1016/j.na.2004.08.018
- Gossez, J. P., 10.2307/1996957, Trans. Am. Math. Soc. 190 (1974), 163-205. (1974) Zbl0239.35045MR0342854DOI10.2307/1996957
- Nassar, S. Hadj, Moussa, H., Rhoudaf, M., 10.1016/j.amc.2014.10.026, Appl. Math. Comput. 249 (2014), 253-264. (2014) Zbl1338.35257MR3279419DOI10.1016/j.amc.2014.10.026
- Landes, R., Mustonen, V., 10.1007/BF02384435, Ark. Mat. 25 (1987), 29-40. (1987) Zbl0697.35071MR0918378DOI10.1007/BF02384435
- Musielak, J., 10.1007/BFb0072210, Lecture Notes in Math. 1034. Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434DOI10.1007/BFb0072210
- Redwane, H., Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dyn. Syst. Appl. 2 (2007), 241-264. (2007) MR2489045
- Redwane, H., 10.14232/ejqtde.2010.1.2, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Paper No. 2, 19 pages. (2010) Zbl1192.35103MR2577155DOI10.14232/ejqtde.2010.1.2
- Vally, M. Sidi El, Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces, Adv. Dyn. Syst. Appl. 8 (2013), 115-124. (2013) MR3071548
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.