On hyponormal operators in Krein spaces

Kevin Esmeral; Osmin Ferrer; Jorge Jalk; Boris Lora Castro

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 4, page 249-259
  • ISSN: 0044-8753

Abstract

top
In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators T for which there exists a fundamental decomposition 𝕂 = 𝕂 + 𝕂 - of the Krein space 𝕂 with 𝕂 + and 𝕂 - invariant under T .

How to cite

top

Esmeral, Kevin, et al. "On hyponormal operators in Krein spaces." Archivum Mathematicum 055.4 (2019): 249-259. <http://eudml.org/doc/294398>.

@article{Esmeral2019,
abstract = {In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators $T$ for which there exists a fundamental decomposition $\mathbb \{K\}= \mathbb \{K\}^\{+\} \oplus \mathbb \{K\}^\{-\}$ of the Krein space $\mathbb \{K\}$ with $\mathbb \{K\}^\{+\}$ and $\mathbb \{K\}^\{-\}$ invariant under $T$.},
author = {Esmeral, Kevin, Ferrer, Osmin, Jalk, Jorge, Lora Castro, Boris},
journal = {Archivum Mathematicum},
keywords = {Hyponormal operators; Krein spaces; $J$-hyponormal operators},
language = {eng},
number = {4},
pages = {249-259},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On hyponormal operators in Krein spaces},
url = {http://eudml.org/doc/294398},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Esmeral, Kevin
AU - Ferrer, Osmin
AU - Jalk, Jorge
AU - Lora Castro, Boris
TI - On hyponormal operators in Krein spaces
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 4
SP - 249
EP - 259
AB - In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators $T$ for which there exists a fundamental decomposition $\mathbb {K}= \mathbb {K}^{+} \oplus \mathbb {K}^{-}$ of the Krein space $\mathbb {K}$ with $\mathbb {K}^{+}$ and $\mathbb {K}^{-}$ invariant under $T$.
LA - eng
KW - Hyponormal operators; Krein spaces; $J$-hyponormal operators
UR - http://eudml.org/doc/294398
ER -

References

top
  1. Andô, T., 10.2307/2034629, Proc. Amer. Math. Soc. 14 (1963), 290–291. (1963) MR0145353DOI10.2307/2034629
  2. Azizov, T.Ya., Iokhvidov, I.S., Linear operator in spaces with an indefinite metric, Pure and Applied Mathematics, John Wiley Sons, 1989. (1989) MR1033489
  3. Berberian, S.K., Introduction to Hilbert space, Oxford University Press, 1961. (1961) MR0137976
  4. Bognar, J., Indefinite inner product spaces, Springer, 1974. (1974) MR0467261
  5. Braha, N.L., Lohaj, M., Marevci, F.H., Lohaj, Sh., Some properties of paranormal and hyponormal operators, Bull. Math. Anal. Appl. 1 (2) (2009), 23–35. (2009) MR2578108
  6. Cowen, C.C., Shaokuan, L., Hilbert space operators that are subnormal in the Krein space sense, J. Operator Theory 20 (1988), 165–181. (1988) MR0972187
  7. Esmeral, K., Ferrer, O., Castro, B. Lora, 10.12988/ijma.2016.6469, Int. J. Math. Anal. 19 (2016), 939–952. (2016) DOI10.12988/ijma.2016.6469
  8. Halmos, P.R., Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125–134. (1950) MR0044036
  9. McEnnis, B.W., Fundamental reducibility of selfadjoint operators on Krein space, J. Operator Theory 8 (1982), 219–225. (1982) MR0677413
  10. Putnam, C.R., 10.2140/pjm.1957.7.1649, Pacific J. Math. 7 (1957), 1649–1652. (1957) MR0093710DOI10.2140/pjm.1957.7.1649
  11. Sheth, I.H., 10.1090/S0002-9939-1966-0196498-7, Proc. Amer. Math. Soc. 17 (1966), 998–1000. (1966) MR0196498DOI10.1090/S0002-9939-1966-0196498-7
  12. Stampfli, J.G., 10.2140/pjm.1962.12.1453, Pacific J. Math. 12 (1962), 1453–1458. (1962) MR0149282DOI10.2140/pjm.1962.12.1453
  13. Xia, D., Spectral theory of hyponormal operators, Birkhäuser Verlag, 1983. (1983) MR0806959

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.