Integral averaging technique for oscillation of damped half-linear oscillators
Yukihide Enaka; Masakazu Onitsuka
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 3, page 755-770
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topEnaka, Yukihide, and Onitsuka, Masakazu. "Integral averaging technique for oscillation of damped half-linear oscillators." Czechoslovak Mathematical Journal 68.3 (2018): 755-770. <http://eudml.org/doc/294404>.
@article{Enaka2018,
abstract = {This paper is concerned with the oscillatory behavior of the damped half-linear oscillator $(a(t)\phi _p(x^\{\prime \}))^\{\prime \}+b(t)\phi _p(x^\{\prime \})+c(t)\phi _p(x) = 0$, where $\phi _p(x) = |x|^\{p-1\}\mathop \{\rm sgn\} x$ for $x \in \mathbb \{R\}$ and $p > 1$. A sufficient condition is established for oscillation of all nontrivial solutions of the damped half-linear oscillator under the integral averaging conditions. The main result can be given by using a generalized Young’s inequality and the Riccati type technique. Some examples are included to illustrate the result. Especially, an example which asserts that all nontrivial solutions are oscillatory if and only if $p \ne 2$ is presented.},
author = {Enaka, Yukihide, Onitsuka, Masakazu},
journal = {Czechoslovak Mathematical Journal},
keywords = {damped half-linear oscillator; integral averaging technique; Riccati technique; generalized Young inequality; oscillatory solution},
language = {eng},
number = {3},
pages = {755-770},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integral averaging technique for oscillation of damped half-linear oscillators},
url = {http://eudml.org/doc/294404},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Enaka, Yukihide
AU - Onitsuka, Masakazu
TI - Integral averaging technique for oscillation of damped half-linear oscillators
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 755
EP - 770
AB - This paper is concerned with the oscillatory behavior of the damped half-linear oscillator $(a(t)\phi _p(x^{\prime }))^{\prime }+b(t)\phi _p(x^{\prime })+c(t)\phi _p(x) = 0$, where $\phi _p(x) = |x|^{p-1}\mathop {\rm sgn} x$ for $x \in \mathbb {R}$ and $p > 1$. A sufficient condition is established for oscillation of all nontrivial solutions of the damped half-linear oscillator under the integral averaging conditions. The main result can be given by using a generalized Young’s inequality and the Riccati type technique. Some examples are included to illustrate the result. Especially, an example which asserts that all nontrivial solutions are oscillatory if and only if $p \ne 2$ is presented.
LA - eng
KW - damped half-linear oscillator; integral averaging technique; Riccati technique; generalized Young inequality; oscillatory solution
UR - http://eudml.org/doc/294404
ER -
References
top- Agarwal, R. P., Grace, S. R., O'Regan, D., 10.1007/978-94-017-2515-6, Kluwer Academic Publishers, Dordrecht (2002). (2002) Zbl1073.34002MR2091751DOI10.1007/978-94-017-2515-6
- Çakmak, D., 10.1016/j.jmaa.2004.06.046, J. Math. Anal. Appl. 300 (2004), 408-425. (2004) Zbl1082.34030MR2098218DOI10.1016/j.jmaa.2004.06.046
- Cecchi, M., Došlá, Z., Došlý, O., Marini, M., 10.14232/ejqtde.2013.1.12, Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Paper No. 12, 14 pages. (2013) Zbl1340.34125MR3019662DOI10.14232/ejqtde.2013.1.12
- Coles, W. J., 10.2307/2035563, Proc. Am. Math. Soc. 19 (1968), 507. (1968) Zbl0155.12802MR0223644DOI10.2307/2035563
- Coppel, W. A., 10.1007/BFb0058618, Lecture Notes in Mathematics 220, Springer, Berlin (1971). (1971) Zbl0224.34003MR0460785DOI10.1007/BFb0058618
- Došlý, O., Half-linear differential equations, Handbook of Differential Equations: Ordinary Differential Equations. Vol. I. Elsevier/North-Holland, Amsterdam (2004), 161-357 A. Cañada et al. (2004) Zbl1090.34027MR2166491
- Došlý, O., Řehák, P., 10.1016/S0304-0208(13)72439-3, North-Holland Mathematics Studies 202, Elsevier Science, Amsterdam (2005). (2005) Zbl1090.34001MR2158903DOI10.1016/S0304-0208(13)72439-3
- Fišnarová, S., Mařík, R., 10.1155/2011/638271, Abstr. Appl. Anal. 2011 (2011), Article ID 638271, 15 pages. (2011) Zbl1232.34052MR2846243DOI10.1155/2011/638271
- Grace, S. R., Lalli, B. S., 10.1007/BF01762792, Ann. Mat. Pura Appl., IV. Ser. 151 (1988), 149-159. (1988) Zbl0648.34039MR0964507DOI10.1007/BF01762792
- Grace, S. R., Lalli, B. S., 10.1016/0022-247X(90)90301-U, J. Math. Anal. Appl. 149 (1990), 277-311. (1990) Zbl0697.34040MR1054809DOI10.1016/0022-247X(90)90301-U
- Hartman, P., Ordinary Differential Equations, John Wiley and Sons, New York (1964). (1964) Zbl0125.32102MR0171038
- Hasil, P., Veselý, M., 10.1556/SScMath.51.2014.3.1283, Stud. Sci. Math. Hung. 51 (2014), 303-321. (2014) Zbl1340.34127MR3254918DOI10.1556/SScMath.51.2014.3.1283
- Hasil, P., Veselý, M., 10.1186/s13662-015-0533-4, Adv. Difference Equ. 2015 (2015), Article No. 190, 17 pages. (2015) MR3358100DOI10.1186/s13662-015-0533-4
- Hata, S., Sugie, J., 10.1007/s10474-012-0259-7, Acta Math. Hung. 138 (2013), 156-172. (2013) Zbl1299.34193MR3015969DOI10.1007/s10474-012-0259-7
- Kamenev, I. V., 10.1007/BF01153154, Math. Notes 23 (1978), 136-138. English. Russian original translation from Mat. Zametki 23 1978 249-251. (1978) Zbl0408.34031MR0486798DOI10.1007/BF01153154
- Li, T., Rogovchenko, Y. V., Tang, S., 10.2478/s12175-014-0271-1, Math. Slovaca 64 (2014), 1227-1236. (2014) Zbl1349.34111MR3277849DOI10.2478/s12175-014-0271-1
- Mirzov, J. D., Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations, Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 14, Masaryk University, Brno 14 (2004). (2004) Zbl1154.34300MR2144761
- Onitsuka, M., Soeda, T., 10.1186/s13662-015-0494-7, Adv. Difference Equ. 2015 (2015), Article No. 158, 24 pages. (2015) MR3359784DOI10.1186/s13662-015-0494-7
- Onitsuka, M., Sugie, J., 10.1017/S0308210510000326, Proc. R. Soc. Edinb., Sect. A, Math. 141 (2011), 1083-1101. (2011) Zbl1232.34081MR2838369DOI10.1017/S0308210510000326
- Onitsuka, M., Tanaka, S., 10.1007/s10474-017-0722-6, Acta Math. Hung. 152 (2017), 336-364. (2017) Zbl06806136MR3682888DOI10.1007/s10474-017-0722-6
- Pašić, M., 10.1155/2013/852180, Abstr. Appl. Anal. 2013 (2013), Article ID 852180, 10 pages. (2013) Zbl1308.34043MR3034985DOI10.1155/2013/852180
- Řehák, P., A Riccati technique for proving oscillation of a half-linear equation, Electron. J. Differ. Equ. 2008 (2008), Article No. 105, 8 pages. (2008) Zbl1170.34317MR2430902
- Řehák, P., 10.1007/s10474-008-7181-z, Acta Math. Hung. 121 (2008), 93-105. (2008) Zbl1199.34167MR2463252DOI10.1007/s10474-008-7181-z
- Řehák, P., 10.1007/s10474-015-0522-9, Acta Math. Hung. 147 (2015), 158-171. (2015) Zbl1374.34102MR3391519DOI10.1007/s10474-015-0522-9
- Sugie, J., 10.1016/j.na.2011.07.028, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 7151-7167. (2011) Zbl1243.34073MR2833701DOI10.1016/j.na.2011.07.028
- Sugie, J., Matsumura, K., 10.1016/j.amc.2007.10.007, Appl. Math. Comput. 199 (2008), 447-455. (2008) Zbl1217.34056MR2420574DOI10.1016/j.amc.2007.10.007
- Sugie, J., Onitsuka, M., Global asymptotic stability for damped half-linear differential equations, Acta Sci. Math. 73 (2007), 613-636. (2007) Zbl1265.34199MR2380068
- Sugie, J., Onitsuka, M., 10.1016/j.na.2013.12.005, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 98 (2014), 83-103. (2014) Zbl1291.34096MR3158447DOI10.1016/j.na.2013.12.005
- Swanson, C. A., 10.1016/s0076-5392(08)x6131-4, Mathematics in Science and Engineering 48. Academic Press, New York (1968). (1968) Zbl0191.09904MR0463570DOI10.1016/s0076-5392(08)x6131-4
- Tiryaki, A., 10.14232/ejqtde.2009.1.61, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), Article No. 61, 11 pages. (2009) Zbl1195.34100MR2558636DOI10.14232/ejqtde.2009.1.61
- Tiryaki, A., Çakmak, D., Ayanlar, B., 10.1016/S0022-247X(03)00145-8, J. Math. Anal. Appl. 281 (2003), 565-574. (2003) Zbl1030.34033MR1982674DOI10.1016/S0022-247X(03)00145-8
- Tunç, E., Avcı, H., 10.1007/s11253-012-0590-8, Ukr. Math. J. 63 (2012), 1441-1457. English. Russian original translation from Ukr. Mat. Zh. 63 2011 1263-1278. (2012) Zbl1256.34023MR3109665DOI10.1007/s11253-012-0590-8
- Wintner, A., 10.1090/qam/28499, Q. Appl. Math. 7 (1949), 115-117. (1949) Zbl0032.34801MR0028499DOI10.1090/qam/28499
- Wong, J. S. W., 10.1006/jmaa.2000.7376, J. Math. Anal. Appl. 258 (2001), 244-257. (2001) Zbl0987.34024MR1828103DOI10.1006/jmaa.2000.7376
- Yamaoka, N., 10.1016/j.jmaa.2006.02.021, J. Math. Anal. Appl. 325 (2007), 932-948. (2007) Zbl1108.34027MR2270061DOI10.1016/j.jmaa.2006.02.021
- Zhang, Q., Wang, L., 10.1007/s10440-009-9483-8, Acta Appl. Math. 110 (2010), 885-893. (2010) Zbl1197.34050MR2610598DOI10.1007/s10440-009-9483-8
- Zheng, W., Sugie, J., 10.1007/s00605-014-0695-2, Monatsh. Math. 179 (2016), 149-160. (2016) Zbl1344.34066MR3439277DOI10.1007/s00605-014-0695-2
- Zheng, Z., 10.1016/S0022-247X(02)00297-4, J. Math. Anal. Appl. 274 (2002), 466-473. (2002) Zbl1025.34030MR1936709DOI10.1016/S0022-247X(02)00297-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.