Displaying similar documents to “Integral averaging technique for oscillation of damped half-linear oscillators”

Oscillation criteria for fourth order half-linear differential equations

Jaroslav Jaroš, Kusano Takaŝi, Tomoyuki Tanigawa (2020)

Archivum Mathematicum

Similarity:

Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form ( | y ' ' | α sgn y ' ' ) ' ' + q ( t ) | y | α sgn y = 0 , t a > 0 , A where α > 0 is a constant and q ( t ) is positive continuous function on [ a , ) , are given in terms of an increasing continuously differentiable function ω ( t ) from [ a , ) to ( 0 , ) which satisfies a 1 / ( t ω ( t ) ) d t < .

Oscillation criteria for nonlinear differential equations with p ( t ) -Laplacian

Yutaka Shoukaku (2016)

Mathematica Bohemica

Similarity:

Recently there has been an increasing interest in studying p ( t ) -Laplacian equations, an example of which is given in the following form ( | u ' ( t ) | p ( t ) - 2 u ' ( t ) ) ' + c ( t ) | u ( t ) | q ( t ) - 2 u ( t ) = 0 , t > 0 . In particular, the first study of sufficient conditions for oscillatory solution of p ( t ) -Laplacian equations was made by Zhang (2007), but to our knowledge, there has not been a paper which gives the oscillatory conditions by utilizing Riccati inequality. Therefore, we establish sufficient conditions for oscillatory solution of nonlinear differential equations...

Nonrectifiable oscillatory solutions of second order linear differential equations

Takanao Kanemitsu, Satoshi Tanaka (2017)

Archivum Mathematicum

Similarity:

The second order linear differential equation ( p ( x ) y ' ) ' + q ( x ) y = 0 , x ( 0 , x 0 ] is considered, where p , q C 1 ( 0 , x 0 ] , p ( x ) > 0 , q ( x ) > 0 for x ( 0 , x 0 ] . Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.

A note on the oscillation problems for differential equations with p ( t ) -Laplacian

Kōdai Fujimoto (2023)

Archivum Mathematicum

Similarity:

This paper deals with the oscillation problems on the nonlinear differential equation ( a ( t ) | x ' | p ( t ) - 2 x ' ) ' + b ( t ) | x | λ - 2 x = 0 involving p ( t ) -Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem.

L p type mapping estimates for oscillatory integrals in higher dimensions

G. Sampson (2006)

Studia Mathematica

Similarity:

We show in two dimensions that if K f = ² k ( x , y ) f ( y ) d y , k ( x , y ) = ( e i x a · y b ) / ( | x - y | η ) , p = 4/(2+η), a ≥ b ≥ 1̅ = (1,1), v p ( y ) = y ( p / p ' ) ( 1 ̅ - b / a ) , then | | K f | | p C | | f | | p , v p if η + α₁ + α₂ < 2, α j = 1 - b j / a j , j = 1,2. Our methods apply in all dimensions and also for more general kernels.

A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations

Manabu Naito (2024)

Mathematica Bohemica

Similarity:

The half-linear differential equation ( | u ' | α sgn u ' ) ' = α ( λ α + 1 + b ( t ) ) | u | α sgn u , t t 0 , is considered, where α and λ are positive constants and b ( t ) is a real-valued continuous function on [ t 0 , ) . It is proved that, under a mild integral smallness condition of b ( t ) which is weaker than the absolutely integrable condition of b ( t ) , the above equation has a nonoscillatory solution u 0 ( t ) such that u 0 ( t ) e - λ t and u 0 ' ( t ) - λ e - λ t ( t ), and a nonoscillatory solution u 1 ( t ) such that u 1 ( t ) e λ t and u 1 ' ( t ) λ e λ t ( t ).

Oscillation properties for a scalar linear difference equation of mixed type

Leonid Berezansky, Sandra Pinelas (2016)

Mathematica Bohemica

Similarity:

The aim of this work is to study oscillation properties for a scalar linear difference equation of mixed type Δ x ( n ) + k = - p q a k ( n ) x ( n + k ) = 0 , n > n 0 , where Δ x ( n ) = x ( n + 1 ) - x ( n ) is the difference operator and { a k ( n ) } are sequences of real numbers for k = - p , ... , q , and p > 0 , q 0 . We obtain sufficient conditions for the existence of oscillatory and nonoscillatory solutions. Some asymptotic properties are introduced.

On asymptotic behavior of solutions to Emden-Fowler type higher-order differential equations

Irina Astashova (2015)

Mathematica Bohemica

Similarity:

For the equation y ( n ) + | y | k sgn y = 0 , k > 1 , n = 3 , 4 , existence of oscillatory solutions y = ( x * - x ) - α h ( log ( x * - x ) ) , α = n k - 1 , x < x * , is proved, where x * is an arbitrary point and h is a periodic non-constant function on . The result on existence of such solutions with a positive periodic non-constant function h on is formulated for the equation y ( n ) = | y | k sgn y , k > 1 , n = 12 , 13 , 14 .

Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator

R.N. Rath, K.C. Panda, S.K. Rath (2022)

Archivum Mathematicum

Similarity:

In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation ( y ( t ) - i = 1 k p i ( t ) y ( r i ( t ) ) ) ( n ) + v ( t ) G ( y ( g ( t ) ) ) - u ( t ) H ( y ( h ( t ) ) ) = f ( t ) oscillates or tends to zero as t , where, n 1 is any positive integer, p i , r i C ( n ) ( [ 0 , ) , )  and p i are bounded for each i = 1 , 2 , , k . Further, f C ( [ 0 , ) , ) , g , h , v , u C ( [ 0 , ) , [ 0 , ) ) , G and H C ( , ) . The functional delays r i ( t ) t , g ( t ) t and h ( t ) t and all of them approach as t . The results hold when u 0 and f ( t ) 0 . This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature. ...

On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2010)

Colloquium Mathematicae

Similarity:

Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

On Kakeya–Nikodym averages, L p -norms and lower bounds for nodal sets of eigenfunctions in higher dimensions

Matthew D. Blair, Christopher D. Sogge (2015)

Journal of the European Mathematical Society

Similarity:

We extend a result of the second author [27, Theorem 1.1] to dimensions d 3 which relates the size of L p -norms of eigenfunctions for 2 < p < 2 ( d + 1 ) / d - 1 to the amount of L 2 -mass in shrinking tubes about unit-length geodesics. The proof uses bilinear oscillatory integral estimates of Lee [22] and a variable coefficient variant of an " ϵ removal lemma" of Tao and Vargas [35]. We also use Hörmander’s [20] L 2 oscillatory integral theorem and the Cartan–Hadamard theorem to show that, under the assumption of nonpositive...

Ramsey numbers for trees II

Zhi-Hong Sun (2021)

Czechoslovak Mathematical Journal

Similarity:

Let r ( G 1 , G 2 ) be the Ramsey number of the two graphs G 1 and G 2 . For n 1 n 2 1 let S ( n 1 , n 2 ) be the double star given by V ( S ( n 1 , n 2 ) ) = { v 0 , v 1 , ... , v n 1 , w 0 , w 1 , ... , w n 2 } and E ( S ( n 1 , n 2 ) ) = { v 0 v 1 , ... , v 0 v n 1 , v 0 w 0 , w 0 w 1 , ... , w 0 w n 2 } . We determine r ( K 1 , m - 1 , S ( n 1 , n 2 ) ) under certain conditions. For n 6 let T n 3 = S ( n - 5 , 3 ) , T n ' ' = ( V , E 2 ) and T n ' ' ' = ( V , E 3 ) , where V = { v 0 , v 1 , ... , v n - 1 } , E 2 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 1 v n - 2 , v 2 v n - 1 } and E 3 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 2 v n - 2 , v 3 v n - 1 } . We also obtain explicit formulas for r ( K 1 , m - 1 , T n ) , r ( T m ' , T n ) ( n m + 3 ) , r ( T n , T n ) , r ( T n ' , T n ) and r ( P n , T n ) , where T n { T n ' ' , T n ' ' ' , T n 3 } , P n is the path on n vertices and T n ' is the unique tree with n vertices and maximal degree n - 2 .