An improved nonmonotone adaptive trust region method

Yanqin Xue; Hongwei Liu; Zexian Liu

Applications of Mathematics (2019)

  • Volume: 64, Issue: 3, page 335-350
  • ISSN: 0862-7940

Abstract

top
Trust region methods are a class of effective iterative schemes in numerical optimization. In this paper, a new improved nonmonotone adaptive trust region method for solving unconstrained optimization problems is proposed. We construct an approximate model where the approximation to Hessian matrix is updated by the scaled memoryless BFGS update formula, and incorporate a nonmonotone technique with the new proposed adaptive trust region radius. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some suitable and standard assumptions, it is shown that the proposed algorithm possesses global convergence and superlinear convergence. Numerical results demonstrate that the proposed method is very promising.

How to cite

top

Xue, Yanqin, Liu, Hongwei, and Liu, Zexian. "An improved nonmonotone adaptive trust region method." Applications of Mathematics 64.3 (2019): 335-350. <http://eudml.org/doc/294424>.

@article{Xue2019,
abstract = {Trust region methods are a class of effective iterative schemes in numerical optimization. In this paper, a new improved nonmonotone adaptive trust region method for solving unconstrained optimization problems is proposed. We construct an approximate model where the approximation to Hessian matrix is updated by the scaled memoryless BFGS update formula, and incorporate a nonmonotone technique with the new proposed adaptive trust region radius. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some suitable and standard assumptions, it is shown that the proposed algorithm possesses global convergence and superlinear convergence. Numerical results demonstrate that the proposed method is very promising.},
author = {Xue, Yanqin, Liu, Hongwei, Liu, Zexian},
journal = {Applications of Mathematics},
keywords = {unconstrained optimization; trust region method; scaled memoryless BFGS update; nonmonotone technique; global convergence},
language = {eng},
number = {3},
pages = {335-350},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An improved nonmonotone adaptive trust region method},
url = {http://eudml.org/doc/294424},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Xue, Yanqin
AU - Liu, Hongwei
AU - Liu, Zexian
TI - An improved nonmonotone adaptive trust region method
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 335
EP - 350
AB - Trust region methods are a class of effective iterative schemes in numerical optimization. In this paper, a new improved nonmonotone adaptive trust region method for solving unconstrained optimization problems is proposed. We construct an approximate model where the approximation to Hessian matrix is updated by the scaled memoryless BFGS update formula, and incorporate a nonmonotone technique with the new proposed adaptive trust region radius. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some suitable and standard assumptions, it is shown that the proposed algorithm possesses global convergence and superlinear convergence. Numerical results demonstrate that the proposed method is very promising.
LA - eng
KW - unconstrained optimization; trust region method; scaled memoryless BFGS update; nonmonotone technique; global convergence
UR - http://eudml.org/doc/294424
ER -

References

top
  1. Ahookhosh, M., Amini, K., 10.1016/j.camwa.2010.04.034, Comput. Math. Appl. 60 (2010), 411-422. (2010) Zbl1201.90184MR2665646DOI10.1016/j.camwa.2010.04.034
  2. Ahookhosh, M., Amini, K., 10.1007/s11075-011-9502-5, Numer. Algorithms 59 (2012), 523-540. (2012) Zbl1243.65066MR2892563DOI10.1007/s11075-011-9502-5
  3. Andrei, N., An unconstrained optimization test functions collection, Adv. Model. Optim. 10 (2008), 147-161. (2008) Zbl1161.90486MR2424936
  4. Andrei, N., 10.1016/j.ejor.2009.11.030, Eur. J. Oper. Res. 204 (2010), 410-420. (2010) Zbl1189.90151MR2587869DOI10.1016/j.ejor.2009.11.030
  5. Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., Pedersen, H. C., 10.1007/BFb0120945, Math. Program. Study 16 (1982), 1-17. (1982) Zbl0477.90072MR0650626DOI10.1007/BFb0120945
  6. Conn, A. R., Gould, N. I. M., Toint, P. L., /10.1137/1.9780898719857, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics; Mathematical Programming Society, Philadelphia (2000). (2000) Zbl0958.65071MR1774899DOI/10.1137/1.9780898719857
  7. Deng, N. Y., Xiao, Y., Zhou, F. J., 10.1007/BF00939608, J. Optimization Theory Appl. 76 (1993), 259-285. (1993) Zbl0797.90088MR1203903DOI10.1007/BF00939608
  8. Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 201-213. (2002) Zbl1049.90004MR1875515DOI10.1007/s101070100263
  9. Fan, J.-Y., Yuan, Y.-X., A new trust region algorithm with trust region radius converging to zero, Proceedings of the 5th International Conference on Optimization: Techniques and Applications Hong Kong (2001), 786-794. (2001) MR3522937
  10. Gould, N. I. M., Orban, D., Toint, P. L., 10.1145/962437.962439, ACM Trans. Math. Softw. 29 (2003), 373-394. (2003) Zbl1068.90526DOI10.1145/962437.962439
  11. Grippo, L., Lampariello, F., Lucidi, S., 10.1137/0723046, SIAM J. Numer. Anal. 23 (1986), 707-716. (1986) Zbl0616.65067MR0849278DOI10.1137/0723046
  12. Kamandi, A., Amini, K., Ahookhosh, M., 10.1007/s11590-016-1018-4, Optim. Lett. 11 (2017), 555-569. (2017) Zbl1367.90102MR3610242DOI10.1007/s11590-016-1018-4
  13. Li, D., Fukushima, M., 10.1016/S0377-0427(00)00540-9, J. Comput. Appl. Math. 129 (2001), 15-35. (2001) Zbl0984.65055MR1823208DOI10.1016/S0377-0427(00)00540-9
  14. Maratos, N., Exact penalty function algorithms for finite dimensional and control optimization problems, Ph.D. Thesis, University of London, London (1978). (1978) 
  15. Marquardt, D. W., 10.1137/0111030, J. Soc. Ind. Appl. Math. 11 (1963), 431-441. (1963) Zbl0112.10505MR0153071DOI10.1137/0111030
  16. Peyghami, M. R., Tarzanagh, D. A., 10.1007/s10589-015-9726-8, Comput. Optim. Appl. 61 (2015), 321-341. (2015) Zbl1326.90081MR3349838DOI10.1007/s10589-015-9726-8
  17. Powell, M. J. D., 10.1016/B978-0-12-597050-1.50006-3, Nonlinear Programming, Proceedings of a Symposium Conducted by the Mathematics Research Center Academic Press, New York (1970), 31-65. (1970) Zbl0228.90043MR0272162DOI10.1016/B978-0-12-597050-1.50006-3
  18. Rezaee, S., Babaie-Kafaki, S., 10.1080/10556788.2017.1364738, Optim. Methods Softw. 34 (2019), 264-277. (2019) Zbl07024419MR3909020DOI10.1080/10556788.2017.1364738
  19. Shi, Z.-J., Guo, J., 10.1007/s10589-007-9099-8, Comput. Optim. Appl. 41 (2008), 225-242. (2008) Zbl1216.90086MR2447894DOI10.1007/s10589-007-9099-8
  20. Sun, W., 10.1016/j.amc.2003.07.008, Appl. Math. Comput. 156 (2004), 159-174. (2004) Zbl1059.65055MR2087420DOI10.1016/j.amc.2003.07.008
  21. Sun, W., Yuan, Y., 10.1007/b106451, Springer Optimization and Its Applications 1, Springer, New York (2006). (2006) Zbl1129.90002MR2232297DOI10.1007/b106451
  22. Winfield, D., 10.1093/imamat/12.3.339, J. Inst. Math. Appl. 12 (1973), 339-347. (1973) Zbl0274.90060MR0329263DOI10.1093/imamat/12.3.339
  23. Zhang, J.-L., Zhang, X.-S., 10.1016/S0898-1221(03)00130-5, Comput. Math. Appl. 45 (2003), 1469-1477. (2003) Zbl1065.90071MR1992076DOI10.1016/S0898-1221(03)00130-5
  24. Zhang, X., Zhang, J., Liao, L., 10.1360/02ys9067, Sci. China, Ser. A 45 (2002), 620-631. (2002) Zbl1105.90361MR1911178DOI10.1360/02ys9067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.