A new nonmonotone adaptive trust region algorithm
Applications of Mathematics (2022)
- Volume: 67, Issue: 2, page 233-250
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKamandi, Ahmad, and Amini, Keyvan. "A new nonmonotone adaptive trust region algorithm." Applications of Mathematics 67.2 (2022): 233-250. <http://eudml.org/doc/297598>.
@article{Kamandi2022,
abstract = {We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild conditions. Numerical experiments demonstrate the efficiency and robustness of the proposed algorithm in solving a collection of unconstrained optimization problems from the CUTEst package.},
author = {Kamandi, Ahmad, Amini, Keyvan},
journal = {Applications of Mathematics},
keywords = {unconstrained optimization; nonmonotone trust region; adaptive radius; global convergence; CUTEst package},
language = {eng},
number = {2},
pages = {233-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new nonmonotone adaptive trust region algorithm},
url = {http://eudml.org/doc/297598},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Kamandi, Ahmad
AU - Amini, Keyvan
TI - A new nonmonotone adaptive trust region algorithm
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 233
EP - 250
AB - We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild conditions. Numerical experiments demonstrate the efficiency and robustness of the proposed algorithm in solving a collection of unconstrained optimization problems from the CUTEst package.
LA - eng
KW - unconstrained optimization; nonmonotone trust region; adaptive radius; global convergence; CUTEst package
UR - http://eudml.org/doc/297598
ER -
References
top- Ahookhosh, M., Amini, K., 10.1016/j.camwa.2010.04.034, Comput. Math. Appl. 60 (2010), 411-422. (2010) Zbl1201.90184MR2665646DOI10.1016/j.camwa.2010.04.034
- Ahookhosh, M., Amini, K., Peyghami, M. R., 10.1016/j.apm.2011.07.021, Appl. Math. Modelling 36 (2012), 478-487. (2012) Zbl1236.90077MR2835025DOI10.1016/j.apm.2011.07.021
- Ayanzadeh, R., Mousavi, S., Halem, M., Finin, T., Quantum annealing based binary compressive sensing with matrix uncertainty, Available at https://arxiv.org/abs/1901.00088 (2019), 15 pages. (2019)
- Chen, R., Menickelly, M., Scheinberg, K., 10.1007/s10107-017-1141-8, Math. Program. 169 (2018), 447-487. (2018) Zbl1401.90136MR3800867DOI10.1007/s10107-017-1141-8
- Conn, A. R., Gould, N. I. M., Toint, P. L., 10.1137/1.9780898719857, MPS/SIAM Series on Optimization 1. SIAM, Philadelphia (2000). (2000) Zbl0958.65071MR1774899DOI10.1137/1.9780898719857
- Deng, N. Y., Xiao, Y., Zhou, F. J., 10.1007/BF00939608, J. Optim. Theory Appl. 76 (1993), 259-285. (1993) Zbl0797.90088MR1203903DOI10.1007/BF00939608
- Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 201-213. (2002) Zbl1049.90004MR1875515DOI10.1007/s101070100263
- Esmaeili, H., Kimiaei, M., 10.1007/s00186-015-0522-0, Math. Methods Oper. Res. 83 (2016), 109-125. (2016) Zbl1333.90126MR3464191DOI10.1007/s00186-015-0522-0
- Gould, N. I. M., Lucidi, S., Roma, M., Toint, P. L., 10.1137/S1052623497322735, SIAM J. Optim. 9 (1999), 504-525. (1999) Zbl1047.90510MR1686795DOI10.1137/S1052623497322735
- Gould, N. I. M., Orban, D., Toint, P. L., 10.1007/s10589-014-9687-3, Comput. Optim. Appl. 60 (2015), 545-557. (2015) Zbl1325.90004MR3320935DOI10.1007/s10589-014-9687-3
- Grippo, L., Lampariello, F., Lucidi, S., 10.1137/0723046, SIAM J. Numer. Anal. 23 (1986), 707-716. (1986) Zbl0616.65067MR0849278DOI10.1137/0723046
- Hong, M., Razaviyayn, M., Luo, Z. Q., Pang, J.-S., 10.1109/MSP.2015.2481563, IEEE Signal Processing Magazine 33 (2016), 57-77. (2016) DOI10.1109/MSP.2015.2481563
- Kamandi, A., Amini, K., Ahookhosh, M., 10.1007/s11590-016-1018-4, Optim. Lett. 11 (2017), 555-569. (2017) Zbl1367.90102MR3610242DOI10.1007/s11590-016-1018-4
- Moré, J. J., Sorensen, D. C., 10.1137/0904038, SIAM J. Sci. Stat. Comput. 4 (1983), 553-572. (1983) Zbl0551.65042MR0723110DOI10.1137/0904038
- Nocedal, J., Wright, S. J., Numerical Optimization, Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). (2006) Zbl1104.65059MR2244940
- Peyghami, M. R., Tarzanagh, D. A., 10.1007/s10589-015-9726-8, Comput. Optim. Appl. 61 (2015), 321-341. (2015) Zbl1326.90081MR3349838DOI10.1007/s10589-015-9726-8
- Schnabel, R. B., Eskow, E., 10.1137/0911064, SIAM J. Sci. Stat. Comput. 11 (1990), 1136-1158. (1990) Zbl0716.65023MR1068501DOI10.1137/0911064
- Shen, J., Mousavi, S., 10.1137/17M1140066, SIAM J. Optim. 28 (2018), 2721-2751. (2018) Zbl06951736MR3858810DOI10.1137/17M1140066
- Shi, Z.-J., Guo, J., 10.1007/s10589-007-9099-8, Comput. Optim. Appl. 41 (2008), 225-242. (2008) Zbl1216.90086MR2447894DOI10.1007/s10589-007-9099-8
- Shi, Z., Wang, S., 10.1016/j.ejor.2010.09.007, Eur. J. Oper. Res. 208 (2011), 28-36. (2011) Zbl1229.90206MR2737860DOI10.1016/j.ejor.2010.09.007
- Steihaug, T., 10.1137/0720042, SIAM J. Numer. Anal. 20 (1983), 626-637. (1983) Zbl0518.65042MR0701102DOI10.1137/0720042
- Xue, Y., Liu, H., Liu, Z., 10.21136/AM.2019.0138-18, Appl. Math., Praha 64 (2019), 335-350. (2019) Zbl07088744MR3956176DOI10.21136/AM.2019.0138-18
- Zhang, X., Zhang, J., Liao, L., An adaptive trust region method and its convergence, Sci. China, Ser. A 45 (2002), 620-631. (2002) Zbl1105.90361MR1911178
- Zhou, Q., Hang, D., 10.1016/j.apnum.2014.12.009, Appl. Numer. Math. 91 (2015), 75-88. (2015) Zbl1310.65070MR3312325DOI10.1016/j.apnum.2014.12.009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.