A new nonmonotone adaptive trust region algorithm

Ahmad Kamandi; Keyvan Amini

Applications of Mathematics (2022)

  • Volume: 67, Issue: 2, page 233-250
  • ISSN: 0862-7940

Abstract

top
We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild conditions. Numerical experiments demonstrate the efficiency and robustness of the proposed algorithm in solving a collection of unconstrained optimization problems from the CUTEst package.

How to cite

top

Kamandi, Ahmad, and Amini, Keyvan. "A new nonmonotone adaptive trust region algorithm." Applications of Mathematics 67.2 (2022): 233-250. <http://eudml.org/doc/297598>.

@article{Kamandi2022,
abstract = {We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild conditions. Numerical experiments demonstrate the efficiency and robustness of the proposed algorithm in solving a collection of unconstrained optimization problems from the CUTEst package.},
author = {Kamandi, Ahmad, Amini, Keyvan},
journal = {Applications of Mathematics},
keywords = {unconstrained optimization; nonmonotone trust region; adaptive radius; global convergence; CUTEst package},
language = {eng},
number = {2},
pages = {233-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new nonmonotone adaptive trust region algorithm},
url = {http://eudml.org/doc/297598},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Kamandi, Ahmad
AU - Amini, Keyvan
TI - A new nonmonotone adaptive trust region algorithm
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 233
EP - 250
AB - We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild conditions. Numerical experiments demonstrate the efficiency and robustness of the proposed algorithm in solving a collection of unconstrained optimization problems from the CUTEst package.
LA - eng
KW - unconstrained optimization; nonmonotone trust region; adaptive radius; global convergence; CUTEst package
UR - http://eudml.org/doc/297598
ER -

References

top
  1. Ahookhosh, M., Amini, K., 10.1016/j.camwa.2010.04.034, Comput. Math. Appl. 60 (2010), 411-422. (2010) Zbl1201.90184MR2665646DOI10.1016/j.camwa.2010.04.034
  2. Ahookhosh, M., Amini, K., Peyghami, M. R., 10.1016/j.apm.2011.07.021, Appl. Math. Modelling 36 (2012), 478-487. (2012) Zbl1236.90077MR2835025DOI10.1016/j.apm.2011.07.021
  3. Ayanzadeh, R., Mousavi, S., Halem, M., Finin, T., Quantum annealing based binary compressive sensing with matrix uncertainty, Available at https://arxiv.org/abs/1901.00088 (2019), 15 pages. (2019) 
  4. Chen, R., Menickelly, M., Scheinberg, K., 10.1007/s10107-017-1141-8, Math. Program. 169 (2018), 447-487. (2018) Zbl1401.90136MR3800867DOI10.1007/s10107-017-1141-8
  5. Conn, A. R., Gould, N. I. M., Toint, P. L., 10.1137/1.9780898719857, MPS/SIAM Series on Optimization 1. SIAM, Philadelphia (2000). (2000) Zbl0958.65071MR1774899DOI10.1137/1.9780898719857
  6. Deng, N. Y., Xiao, Y., Zhou, F. J., 10.1007/BF00939608, J. Optim. Theory Appl. 76 (1993), 259-285. (1993) Zbl0797.90088MR1203903DOI10.1007/BF00939608
  7. Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 201-213. (2002) Zbl1049.90004MR1875515DOI10.1007/s101070100263
  8. Esmaeili, H., Kimiaei, M., 10.1007/s00186-015-0522-0, Math. Methods Oper. Res. 83 (2016), 109-125. (2016) Zbl1333.90126MR3464191DOI10.1007/s00186-015-0522-0
  9. Gould, N. I. M., Lucidi, S., Roma, M., Toint, P. L., 10.1137/S1052623497322735, SIAM J. Optim. 9 (1999), 504-525. (1999) Zbl1047.90510MR1686795DOI10.1137/S1052623497322735
  10. Gould, N. I. M., Orban, D., Toint, P. L., 10.1007/s10589-014-9687-3, Comput. Optim. Appl. 60 (2015), 545-557. (2015) Zbl1325.90004MR3320935DOI10.1007/s10589-014-9687-3
  11. Grippo, L., Lampariello, F., Lucidi, S., 10.1137/0723046, SIAM J. Numer. Anal. 23 (1986), 707-716. (1986) Zbl0616.65067MR0849278DOI10.1137/0723046
  12. Hong, M., Razaviyayn, M., Luo, Z. Q., Pang, J.-S., 10.1109/MSP.2015.2481563, IEEE Signal Processing Magazine 33 (2016), 57-77. (2016) DOI10.1109/MSP.2015.2481563
  13. Kamandi, A., Amini, K., Ahookhosh, M., 10.1007/s11590-016-1018-4, Optim. Lett. 11 (2017), 555-569. (2017) Zbl1367.90102MR3610242DOI10.1007/s11590-016-1018-4
  14. Moré, J. J., Sorensen, D. C., 10.1137/0904038, SIAM J. Sci. Stat. Comput. 4 (1983), 553-572. (1983) Zbl0551.65042MR0723110DOI10.1137/0904038
  15. Nocedal, J., Wright, S. J., Numerical Optimization, Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). (2006) Zbl1104.65059MR2244940
  16. Peyghami, M. R., Tarzanagh, D. A., 10.1007/s10589-015-9726-8, Comput. Optim. Appl. 61 (2015), 321-341. (2015) Zbl1326.90081MR3349838DOI10.1007/s10589-015-9726-8
  17. Schnabel, R. B., Eskow, E., 10.1137/0911064, SIAM J. Sci. Stat. Comput. 11 (1990), 1136-1158. (1990) Zbl0716.65023MR1068501DOI10.1137/0911064
  18. Shen, J., Mousavi, S., 10.1137/17M1140066, SIAM J. Optim. 28 (2018), 2721-2751. (2018) Zbl06951736MR3858810DOI10.1137/17M1140066
  19. Shi, Z.-J., Guo, J., 10.1007/s10589-007-9099-8, Comput. Optim. Appl. 41 (2008), 225-242. (2008) Zbl1216.90086MR2447894DOI10.1007/s10589-007-9099-8
  20. Shi, Z., Wang, S., 10.1016/j.ejor.2010.09.007, Eur. J. Oper. Res. 208 (2011), 28-36. (2011) Zbl1229.90206MR2737860DOI10.1016/j.ejor.2010.09.007
  21. Steihaug, T., 10.1137/0720042, SIAM J. Numer. Anal. 20 (1983), 626-637. (1983) Zbl0518.65042MR0701102DOI10.1137/0720042
  22. Xue, Y., Liu, H., Liu, Z., 10.21136/AM.2019.0138-18, Appl. Math., Praha 64 (2019), 335-350. (2019) Zbl07088744MR3956176DOI10.21136/AM.2019.0138-18
  23. Zhang, X., Zhang, J., Liao, L., An adaptive trust region method and its convergence, Sci. China, Ser. A 45 (2002), 620-631. (2002) Zbl1105.90361MR1911178
  24. Zhou, Q., Hang, D., 10.1016/j.apnum.2014.12.009, Appl. Numer. Math. 91 (2015), 75-88. (2015) Zbl1310.65070MR3312325DOI10.1016/j.apnum.2014.12.009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.