Displaying similar documents to “An improved nonmonotone adaptive trust region method”

Application of the infinitely many times repeated BNS update and conjugate directions to limited-memory optimization methods

Vlček, Jan, Lukšan, Ladislav

Similarity:

To improve the performance of the L-BFGS method for large scale unconstrained optimization, repeating of some BFGS updates was proposed e.g. in [1]. Since this can be time consuming, the extra updates need to be selected carefully. We show that groups of these updates can be repeated infinitely many times under some conditions, without a noticeable increase of the computational time; the limit update is a block BFGS update [17]. It can be obtained by solving of some Lyapunov matrix equation...

A new nonmonotone adaptive trust region algorithm

Ahmad Kamandi, Keyvan Amini (2022)

Applications of Mathematics

Similarity:

We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild...

A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration

Zainab Hassan Ahmed, Mohamed Hbaib, Khalil K. Abbo (2024)

Applications of Mathematics

Similarity:

The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms...

Modifications of the limited-memory BFGS method based on the idea of conjugate directions

Vlček, Jan, Lukšan, Ladislav

Similarity:

Simple modifications of the limited-memory BFGS method (L-BFGS) for large scale unconstrained optimization are considered, which consist in corrections of the used difference vectors (derived from the idea of conjugate directions), utilizing information from the preceding iteration. For quadratic objective functions, the improvement of convergence is the best one in some sense and all stored difference vectors are conjugate for unit stepsizes. The algorithm is globally convergent for...

État de l'art des méthodes “d'optimisation globale”

Gérard Berthiau, Patrick Siarry (2010)

RAIRO - Operations Research

Similarity:

We present a review of the main “global optimization" methods. The paper comprises one introduction and two parts. In the introduction, we recall some generalities about non linear constraint-less optimization and we list some classifications which have been proposed for the global optimization methods. We then describe, in the first part, various “classical" global optimization methods, most of which available long before the appearance of Simulated Annealing (a key event in this...

A self-adaptive trust region method for the extended linear complementarity problems

Zhensheng Yu, Qiang Li (2009)

Applications of Mathematics

Similarity:

By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established...

Adjustment of the scaling parameter of Dai-Kou type conjugate gradient methods with application to motion control

Mahbube Akbari, Saeed Nezhadhosein, Aghile Heydari (2024)

Applications of Mathematics

Similarity:

We introduce a new scaling parameter for the Dai-Kou family of conjugate gradient algorithms (2013), which is one of the most numerically efficient methods for unconstrained optimization. The suggested parameter is based on eigenvalue analysis of the search direction matrix and minimizing the measure function defined by Dennis and Wolkowicz (1993). The corresponding search direction of conjugate gradient method has the sufficient descent property and the extended conjugacy condition....