On adaptive BDDC for the flow in heterogeneous porous media

Bedřich Sousedík

Applications of Mathematics (2019)

  • Volume: 64, Issue: 3, page 309-334
  • ISSN: 0862-7940

Abstract

top
We study a method based on Balancing Domain Decomposition by Constraints (BDDC) for numerical solution of a single-phase flow in heterogeneous porous media. The method solves for both flux and pressure variables. The fluxes are resolved in three steps: the coarse solve is followed by subdomain solves and last we look for a divergence-free flux correction and pressures using conjugate gradients with the BDDC preconditioner. Our main contribution is an application of the adaptive algorithm for selection of flux constraints. Performance of the method is illustrated on the benchmark problem from the 10th SPE Comparative Solution Project (SPE 10). Numerical experiments in both 2D and 3D demonstrate that the first two steps of the method exhibit some numerical upscaling properties, and the adaptive preconditioner in the last step allows a significant decrease in the number of iterations of conjugate gradients at a small additional cost.

How to cite

top

Sousedík, Bedřich. "On adaptive BDDC for the flow in heterogeneous porous media." Applications of Mathematics 64.3 (2019): 309-334. <http://eudml.org/doc/294444>.

@article{Sousedík2019,
abstract = {We study a method based on Balancing Domain Decomposition by Constraints (BDDC) for numerical solution of a single-phase flow in heterogeneous porous media. The method solves for both flux and pressure variables. The fluxes are resolved in three steps: the coarse solve is followed by subdomain solves and last we look for a divergence-free flux correction and pressures using conjugate gradients with the BDDC preconditioner. Our main contribution is an application of the adaptive algorithm for selection of flux constraints. Performance of the method is illustrated on the benchmark problem from the 10th SPE Comparative Solution Project (SPE 10). Numerical experiments in both 2D and 3D demonstrate that the first two steps of the method exhibit some numerical upscaling properties, and the adaptive preconditioner in the last step allows a significant decrease in the number of iterations of conjugate gradients at a small additional cost.},
author = {Sousedík, Bedřich},
journal = {Applications of Mathematics},
keywords = {iterative substructuring; balancing domain decomposition; BDDC; multiscale methods; adaptive methods; flow in porous media; reservoir simulation; SPE 10 benchmark},
language = {eng},
number = {3},
pages = {309-334},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On adaptive BDDC for the flow in heterogeneous porous media},
url = {http://eudml.org/doc/294444},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Sousedík, Bedřich
TI - On adaptive BDDC for the flow in heterogeneous porous media
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 309
EP - 334
AB - We study a method based on Balancing Domain Decomposition by Constraints (BDDC) for numerical solution of a single-phase flow in heterogeneous porous media. The method solves for both flux and pressure variables. The fluxes are resolved in three steps: the coarse solve is followed by subdomain solves and last we look for a divergence-free flux correction and pressures using conjugate gradients with the BDDC preconditioner. Our main contribution is an application of the adaptive algorithm for selection of flux constraints. Performance of the method is illustrated on the benchmark problem from the 10th SPE Comparative Solution Project (SPE 10). Numerical experiments in both 2D and 3D demonstrate that the first two steps of the method exhibit some numerical upscaling properties, and the adaptive preconditioner in the last step allows a significant decrease in the number of iterations of conjugate gradients at a small additional cost.
LA - eng
KW - iterative substructuring; balancing domain decomposition; BDDC; multiscale methods; adaptive methods; flow in porous media; reservoir simulation; SPE 10 benchmark
UR - http://eudml.org/doc/294444
ER -

References

top
  1. Aarnes, J. E., Gimse, T., Lie, K.-A., 10.1007/978-3-540-68783-2_9, Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF Springer, Berlin (2007), 265-306. (2007) Zbl1330.76004MR2348925DOI10.1007/978-3-540-68783-2_9
  2. Aarnes, J. E., Krogstad, S., Lie, K.-A., 10.1137/050634566, Multiscale Model. Simul. 5 (2006), 337-363. (2006) Zbl1124.76022MR2247754DOI10.1137/050634566
  3. Aarnes, J. E., Krogstad, S., Lie, K.-A., 10.1007/s10596-007-9072-8, Comput. Geosci. 12 (2008), 297-315. (2008) Zbl1259.76065MR2434946DOI10.1007/s10596-007-9072-8
  4. Brezzi, F., Fortin, M., 10.1007/978-1-4612-3172-1, Springer Series in Computational Mathematics 15, Springer, New York (1991). (1991) Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
  5. Christie, M. A., Blunt, M. J., 10.2118/72469-pa, SPE Reservoir Eval. Eng. 4 (2001), 308-317. (2001) DOI10.2118/72469-pa
  6. Cowsar, L. C., Mandel, J., Wheeler, M. F., 10.2307/2153480, Math. Comput. 64 (1995), 989-1015. (1995) Zbl0828.65135MR1297465DOI10.2307/2153480
  7. Cros, J.-M., A preconditioner for the Schur complement domain decomposition method, 14th Int. Conf. on Domain Decomposition Methods in Science and Engineering I. Herrera et al. National Autonomous University of Mexico (UNAM), México (2003), 373-380. (2003) Zbl1103.65004MR2093729
  8. Demmel, J. W., 10.1137/1.9781611971446, Society for Industrial and Applied Mathematics, Philadelphia (1997). (1997) Zbl0879.65017MR1463942DOI10.1137/1.9781611971446
  9. Dohrmann, C. R., 10.1137/S1064827502412887, SIAM J. Sci. Comput. 25 (2003), 246-258. (2003) Zbl1038.65039MR2047204DOI10.1137/S1064827502412887
  10. Dohrmann, C. R., A substructuring preconditioner for nearly incompressible elasticity problems, Technical report SAND 2004-5393, Sandia National Laboratories (2004). (2004) 
  11. Dohrmann, C. R., Widlund, O. B., 10.1007/978-3-642-35275-1_2, Domain Decomposition Methods in Science and Engineering XX Lecture Notes Computational Science and Engineering 91, Springer, Heidelberg (2013), 15-25. (2013) Zbl06125818MR3242973DOI10.1007/978-3-642-35275-1_2
  12. Efendiev, Y., Hou, T. Y., 10.1007/978-0-387-09496-0, Surveys and Tutorials in the Applied Mathematical Sciences 4, Springer, New York (2009). (2009) Zbl1163.65080MR2477579DOI10.1007/978-0-387-09496-0
  13. Ewing, R. E., Wang, J., 10.1051/m2an/1992260607391, RAIRO, Modélisation Math. Anal. Numér. 26 (1992), 739-756. (1992) Zbl0765.65104MR1183415DOI10.1051/m2an/1992260607391
  14. Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D., 10.1002/nme.76, Int. J. Numer. Methods Eng. 50 (2001), 1523-1544. (2001) Zbl1008.74076MR1813746DOI10.1002/nme.76
  15. Farhat, C., Lesoinne, M., Pierson, K., 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S, Numer. Linear Algebra Appl. 7 (2000), 687-714. (2000) Zbl1051.65119MR1802366DOI10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
  16. Fragakis, Y., Papadrakakis, M., 10.1016/S0045-7825(03)00374-8, Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830. (2003) Zbl1054.74069DOI10.1016/S0045-7825(03)00374-8
  17. Glowinski, R., Wheeler, M. F., Domain decomposition and mixed finite element methods for elliptic problems, First International Symposium on Domain Decomposition Methods for Partial Differential Equations SIAM, Philadelphia (1988), 144-172. (1988) Zbl0661.65105MR0972516
  18. Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (1996). (1996) Zbl0865.65009MR1417720
  19. Hanek, M., Šístek, J., Burda, P., 10.1007/978-3-319-52389-7_16, Proc. Int. Conf. Domain Decomposition Methods in Science and Engineering XXIII Lecture Notes Computational Science and Engineering 116, Springer, Cham (2017), 171-178. (2017) Zbl06747817MR3718352DOI10.1007/978-3-319-52389-7_16
  20. Karypis, G., Kumar, V., METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0, Technical report, Department of Computer Science, University of Minnesota (1998). (1998) 
  21. Klawonn, A., Kühn, M., Rheinbach, O., 10.1137/15m1049610, SIAM J. Sci. Comput. 38 (2016), A2880--A2911 (2016). (2016) Zbl1346.74168MR3546980DOI10.1137/15m1049610
  22. Klawonn, A., Kühn, M., Rheinbach, O., A closer look at local eigenvalue solvers for adaptive FETI-DP and BDDC, Technical report, Universität zu Köln (2018). Available at https://kups.ub.uni-koeln.de/9020/. 
  23. Klawonn, A., Rheinbach, O., Widlund, O. B., 10.1137/070688675, SIAM J. Numer. Anal. 46 (2008), 2484-2504. (2008) Zbl1176.65135MR2421044DOI10.1137/070688675
  24. Knyazev, A. V., 10.1137/S1064827500366124, SIAM J. Sci. Comput. 23 (2001), 517-541. (2001) Zbl0992.65028MR1861263DOI10.1137/S1064827500366124
  25. Christensen, M. la Cour, Villa, U., Engsig-Karup, A. P., Vassilevski, P. S., 10.1137/140988991, SIAM J. Sci. Comput. 39 (2017), B102--B137. (2017) Zbl1360.65247MR3612903DOI10.1137/140988991
  26. Li, J., Tu, X., 10.1002/nla.639, Numer. Linear Algebra Appl. 16 (2009), 745-773. (2009) Zbl1224.65248MR2554500DOI10.1002/nla.639
  27. Li, J., Widlund, O. B., 10.1137/050628556, SIAM J. Numer. Anal. 44 (2006), 2432-2455. (2006) Zbl1233.76077MR2272601DOI10.1137/050628556
  28. Li, J., Widlund, O. B., 10.1002/nme.1553, Int. J. Numer. Methods Eng. 66 (2006), 250-271. (2006) Zbl1114.65142MR2224479DOI10.1002/nme.1553
  29. Mandel, J., Sousedík, B., 10.1016/j.cma.2006.03.010, Comput. Methods Appl. Mech. Eng. 196 (2007), 1389-1399. (2007) Zbl1173.74435MR2277024DOI10.1016/j.cma.2006.03.010
  30. Mandel, J., Sousedík, B., Dohrmann, C. R., 10.1007/s00607-008-0014-7, Computing 83 (2008), 55-85. (2008) Zbl1163.65091MR2457352DOI10.1007/s00607-008-0014-7
  31. Mandel, J., Sousedík, B., Šístek, J., 10.1016/j.matcom.2011.03.014, Math. Comput. Simul. 82 (2012), 1812-1831. (2012) Zbl1255.65225MR2967935DOI10.1016/j.matcom.2011.03.014
  32. Mathew, T. P., 10.1007/BF01385762, Numer. Math. 65 (1993), 445-468. (1993) Zbl0801.65106MR1231895DOI10.1007/BF01385762
  33. Oh, D.-S., Widlund, O. B., Zampini, S., Dohrmann, C. R., 10.1090/mcom/3254, Math. Comput. 87 (2018), 659-692. (2018) Zbl1380.65065MR3739213DOI10.1090/mcom/3254
  34. Pechstein, C., 10.1007/978-3-642-23588-7, Lecture Notes in Computational Science and Engineering 90, Springer, Berlin (2013). (2013) Zbl1272.65100MR3013465DOI10.1007/978-3-642-23588-7
  35. Pechstein, C., Dohrmann, C. R., A unified framework for adaptive BDDC, ETNA, Electron. Trans. Numer. Anal. 46 (2017), 273-336. (2017) Zbl1368.65043MR3678572
  36. Pechstein, C., Scheichl, R., 10.1007/s00211-011-0359-2, Numer. Math. 118 (2011), 485-529. (2011) Zbl1380.65388MR2810804DOI10.1007/s00211-011-0359-2
  37. Šístek, J., Březina, J., Sousedík, B., 10.1002/nla.1991, Numer. Linear Algebra Appl. 22 (2015), 903-929. (2015) Zbl1389.76057MR3426321DOI10.1002/nla.1991
  38. Sousedík, B., 10.1007/s00211-013-0548-2, Numer. Math. 125 (2013), 761-783. (2013) Zbl1282.65167MR3127330DOI10.1007/s00211-013-0548-2
  39. Sousedík, B., Šístek, J., Mandel, J., 10.1007/s00607-013-0293-5, Computing 95 (2013), 1087-1119. (2013) Zbl1307.65175MR3125603DOI10.1007/s00607-013-0293-5
  40. Spillane, N., Rixen, D. J., 10.1002/nme.4534, Int. J. Numer. Methods Eng. 95 (2013), 953-990. (2013) Zbl1352.65553MR3093793DOI10.1002/nme.4534
  41. Toselli, A., Widlund, O., 10.1007/b137868, Springer Series in Computational Mathematics 34, Springer, Berlin (2005). (2005) Zbl1069.65138MR2104179DOI10.1007/b137868
  42. Tu, X., A BDDC algorithm for a mixed formulation of flow in porous media, ETNA, Electron. Trans. Numer. Anal. 20 (2005), 164-179. (2005) Zbl1160.76368MR2175341
  43. Tu, X., A BDDC algorithm for flow in porous media with a hybrid finite element discretization, ETNA, Electron. Trans. Numer. Anal. 26 (2007), 146-160. (2007) Zbl1170.76034MR2366094
  44. Tu, X., 10.1137/050629902, SIAM J. Sci. Comput. 29 (2007), 1759-1780. (2007) Zbl1163.65094MR2341811DOI10.1137/050629902
  45. Tu, X., 10.1002/nme.1753, Int. J. Numer. Methods Eng. 69 (2007), 33-59. (2007) Zbl1134.65087MR2282536DOI10.1002/nme.1753
  46. Tu, X., 10.1007/s00211-011-0375-2, Numer. Math. 119 (2011), 189-217. (2011) Zbl1230.65136MR2824859DOI10.1007/s00211-011-0375-2
  47. Tu, X., Li, J., 10.2140/camcos.2008.3.25, Commun. Appl. Math. Comput. Sci. 3 (2008), 25-60. (2008) Zbl1165.65402MR2425545DOI10.2140/camcos.2008.3.25
  48. Vecharynski, E., Saad, Y., Sosonkina, M., 10.1137/120898760, SIAM J. Sci. Comput. 36 (2014), A63--A87. (2014) Zbl1290.65025MR3151390DOI10.1137/120898760
  49. Yang, Y., Fu, S., Chung, E. T., A two-grid preconditioner with an adaptive coarse space for flow simulations in highly heterogeneous media, Available at https://arxiv.org/abs/1807.07220 (2018), 17 pages. (2018) MR3942719
  50. Zampini, S., Tu, X., 10.1137/16M1080653, SIAM J. Sci. Comput. 39 (2017), A1389--A1415. (2017) Zbl06760251MR3682184DOI10.1137/16M1080653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.