Sharkovsky's Theorem and Differential Equations III
Pokroky matematiky, fyziky a astronomie (2019)
- Volume: 64, Issue: 2, page 91-103
- ISSN: 0032-2423
Access Full Article
topAbstract
topHow to cite
topReferences
top- Alsedà, L., Llibre, J., Misiurewicz, M., Combinatorial dynamics and entropy in dimension one, . 2nd ed., World Scientific, Singapore, 2000. (2000) MR1255515
- Andres, J., Šarkovského věta a diferenciální rovnice, . Pokroky Mat. Fyz. Astronom. 49 (2004), 151–159. (2004)
- Andres, J., Šarkovského věta a diferenciální rovnice, II, . Pokroky Mat. Fyz. Astronom. 56 (2011), 143–149. (2011)
- Andres, J., 10.1016/j.topol.2017.02.071, . Topology Appl. 221 (2017), 596–609. (2017) MR3624487DOI10.1016/j.topol.2017.02.071
- Andres, J., 10.1142/S0219493717500174, . Stoch. Dyn. 17 (2017), 1–21. (2017) MR3628177DOI10.1142/S0219493717500174
- Andres, J., 10.1142/S0219493719500369, . Stoch. Dyn. 19 (2019), 1–30. (2019) MR3994160DOI10.1142/S0219493719500369
- Andres, J., 10.1016/j.topol.2019.01.008, . Topology Appl. 255 (2019), 126–140. (2019) MR3905238DOI10.1016/j.topol.2019.01.008
- Andres, J., Bednařík, D., Pastor, K., 10.1016/j.jmaa.2004.08.020, . J. Math. Anal. Appl. 303 (2005), 405–417. (2005) MR2122225DOI10.1016/j.jmaa.2004.08.020
- Andres, J., Fišer, J., 10.1142/S0218127417500420, . Internat. J. Bifur. Chaos. 27 (2017), 1–21. (2017) MR3633422DOI10.1142/S0218127417500420
- Andres, J., Górniewicz, L., Topological fixed point principles for boundary value problems, . Kluwer, Dordrecht, 2003. (2003) MR1998968
- Andres, J., Pastor, K., 10.1142/S0218127418500566, . Internat. J. Bifur. Chaos 28 (4) (2018), 1850056, 1–11. (2018) MR3798212DOI10.1142/S0218127418500566
- Andres, J., Pastor, K., A multivalued version of the Block–Sharkovsky theorem applicable to differential equations on the circle, . Internat. J. Bifur. Chaos 28 (11) (2018), 1–15. (2018) MR3868918
- Andres, J., Pastor, K., Sharp Block–Sharkovsky type theorem for multivalued maps on the circle and its application to differential equations and inclusions, . Internat. J. Bifur. Chaos (2019), v tisku. (2019) MR3997004
- Andres, J., Pastor, K., Šnyrychová, P., 10.1007/s11784-007-0029-2, . J. Fixed Point Theory Appl. 2 (2007), 153–170. (2007) MR2336505DOI10.1007/s11784-007-0029-2
- Bernhardt, C., 10.1017/S0143385700001346, . Ergodic Theory Dynam. Systems 1 (1981), 413–417. (1981) MR0662734DOI10.1017/S0143385700001346
- Block, L., 10.1090/S0002-9939-1981-0612745-7, . Proc. Amer. Math. Soc. 82 (1981), 481–486. (1981) MR0612745DOI10.1090/S0002-9939-1981-0612745-7
- Block, L., Guckenheimer, J., Misiurewicz, M., Young, L.-S., Periodic points and topological entropy of one-dimensional maps, . In: Nitecki, Z., Robinson, C. (eds.): Global Theory of Dynamical Systems, Lect. Notes in Math. 819, Springer, Berlin, 1980, 18–34. (1980) MR0591173
- Brown, R. F., Furi, M., Górniewicz, L., Jiang, B., Handbook of topological fixed point theory, . Springer, Berlin, 2005. (2005) MR2170491
- Coddington, E. A., Levinson, N., Theory of differential equations, . McGraw-Hill, New York, 1955. (1955) MR0069338
- Denjoy, A., Sur les courbes définies par les équations différentielles à la surface du tore, . J. Math. Pures Appl. 11 (1932), 333–376. (1932)
- Efremova, L. S., Periodičeskije orbity i stěpeň nepreryvnogo otobraženija okružnosti, . Dif. Integr. Urav. (Gor’kii) 2 (1978), 109–115. (1978)
- Farkas, M., Periodic motions, . Springer, Berlin, 1994. (1994) MR1299528
- Hasselblatt, B., Katok, A., A first course in dynamics: with a panorama of recent developments, . Cambridge Univ. Press, Cambridge, 2003. (2003) MR1995704
- van Kampen, E. R., 10.2307/2372026, . Amer. J. Math. 57 (1935), 142–152. (1935) MR1507062DOI10.2307/2372026
- Katok, A., Hasselblatt, B., Introduction to the modern theory of dynamical systems, . Cambridge Univ. Press, Cambridge, 1995. (1995) MR1326374
- Misiurewicz, M., 10.1017/S014338570000153X, . Ergodic Theory Dynam. Systems 2 (1982), 221–227. (1982) MR0693977DOI10.1017/S014338570000153X
- Poincaré, H., Sur les courbes définies par les équations différentielles (iii), . J. Math. Pures Appl. 1 (1885), 167–244. (1885)
- Siegberg, H. W., Chaotic mappings on , periods one, two, three imply chaos on , . In: Proc. Conf. Numerical solutions of nonlinear equations (Bremen, 1980), Lect. Notes in Math. 878, Springer, Berlin, 1981, 351–370. (1981) MR0644337
- Šarkovskij, A. N., Sosuščestvovanije ciklov nepreryvnogo otobraženija prjamoj v sebja, . Ukrain. Matem. Žurn. 1 (1964), 61–71. (1964)
- Zhao, X., Periodic orbits with least period three on the circle, . Fixed Point Theory Appl. (Article ID 194875) (2008), 1–8. (2008) MR2377542