Sharkovkii theorem and differential equations

Ján Andres

Pokroky matematiky, fyziky a astronomie (2004)

  • Volume: 49, Issue: 2, page 151-159
  • ISSN: 0032-2423

How to cite

top

Andres, Ján. "Šarkovského věta a diferenciální rovnice." Pokroky matematiky, fyziky a astronomie 49.2 (2004): 151-159. <http://eudml.org/doc/196486>.

@article{Andres2004,
author = {Andres, Ján},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Sharkovkii theorem; first order nonlinear differential equations; Sharkovkii theorem; first order nonlinear differential equations},
language = {cze},
number = {2},
pages = {151-159},
publisher = {Jednota českých matematiků a fyziků},
title = {Šarkovského věta a diferenciální rovnice},
url = {http://eudml.org/doc/196486},
volume = {49},
year = {2004},
}

TY - JOUR
AU - Andres, Ján
TI - Šarkovského věta a diferenciální rovnice
JO - Pokroky matematiky, fyziky a astronomie
PY - 2004
PB - Jednota českých matematiků a fyziků
VL - 49
IS - 2
SP - 151
EP - 159
LA - cze
KW - Sharkovkii theorem; first order nonlinear differential equations; Sharkovkii theorem; first order nonlinear differential equations
UR - http://eudml.org/doc/196486
ER -

References

top
  1. Andres, J., 10.1016/S0362-546X(01)00242-5, Nonlin. Anal. 47, 2 (2001), 1017–1028. (2001) Zbl1042.37506MR1970714DOI10.1016/S0362-546X(01)00242-5
  2. Andres, J., 10.1080/1023619031000114314, J. Difference Eqns 10, 1 (2004), 17–28. (2004) MR2033331DOI10.1080/1023619031000114314
  3. Andres, J., Fišer, J., Jüttner, L., 10.1023/A:1014488216807, Set-Valued Anal. 10, 1 (2002), 1–14. (2002) Zbl1082.37048MR1888453DOI10.1023/A:1014488216807
  4. Andres, J., Górniewicz, L., Topological Fixed Point Principles for Boundary Value Problems, Kluwer, Dordrecht 2003. (2003) Zbl1029.55002MR1998968
  5. Andres, J., Jüttner, L., 10.1016/S0362-546X(01)00876-8, Nonlin. Anal. 51 (2002), 1101–1104. (2002) Zbl1015.37032MR1926088DOI10.1016/S0362-546X(01)00876-8
  6. Andres, J., Jüttner, L., Pastor, K., On a multivalued version of the Sharkovskii theorem and its application to differential inclusions II, Set-Valued Anal. (v tisku). MR2128697
  7. Andres, J., Pastor, K., On a multivalued version of the Sharkovskii theorem and its application to differential inclusions III, Topol. Meth. Nonlin. Anal. 22 (2003), 369–386. (2003) Zbl1059.47057MR2036383
  8. Andres, J., Pastor, K., A version of Sharkovskii’s theorem for differential equations, Proc. Amer. Math. Soc. (v tisku). Zbl1063.34030MR2093067
  9. Boyland, P., 10.1090/conm/081/986261, Contemp. Math., vol. 81, Amer. Math. Soc., Providence, R. I., 1988, 119–133. (1988) Zbl0677.58039MR0986261DOI10.1090/conm/081/986261
  10. Barton, R., Burns, K., A simple special case of Sharkovskii’s theorem, Amer. Math. Monthly 107, 10 (2000), 932–933. (2000) Zbl0979.37016MR1807003
  11. Bobok, J., Kuchta, M., X-minimal patterns and generalization of Sharkovskii’s theorem, Fund. Math. 156 (1998), 33–66. (1998) MR1610555
  12. Filippov, A. F., Differenciaľnyje uravnenija s razryvnoj pravoj častju, Nauka, Moskva, 1985. (1985) 
  13. Gleick, J., Chaos, Ando Publ., Praha 1996. (1996) 
  14. Handel, M., 10.1017/S0143385797084940, Ergod. Th. Dynam. Sys. 17 (1997), 593–610. (1997) MR1452182DOI10.1017/S0143385797084940
  15. Kampen, J., 10.1016/S0362-546X(99)00111-X, Nonlin. Anal. 42 (2000), 509–532. (2000) Zbl0967.37014MR1775390DOI10.1016/S0362-546X(99)00111-X
  16. Katok, A., Hasselblatt, B., Introduction to the Modern Theory Dynamical Systems, Cambridge Univ. Press, Cambridge 1995. (1995) MR1326374
  17. Kloeden, P. E., 10.1017/S0004972700010819, Bull. Austral. Math. Soc. 20 (1979), 171–177. (1979) MR0557223DOI10.1017/S0004972700010819
  18. Krasnoseľskij, M. A., Operator sdviga po trajektoriam differenciaľnych uravnenij, Nauka, Moskva 1966. (1966) 
  19. Kannan, V., Saradhi, P. V. S. P., Seshasai, S. P., A generalization of Sharkovskii theorem to higher dimensions, J. Nat. Acad. Math. India (Special volume to dedicate Prof. Dr. R. S. Mishra on the occasion of his 80th birthday), 11 (1995), 69–82. (1995) 
  20. Li, T.-Y., Yorke, J., 10.2307/2318254, Amer. Math. Monthly 82 (1975), 985–992. (1975) Zbl0351.92021MR0385028DOI10.2307/2318254
  21. Matsuoka, T., 10.1007/BF01391795, Invent. Math. 70 (1983), 319–340. (1983) MR0683687DOI10.1007/BF01391795
  22. Matsuoka, T., Braids of periodic points and a  2 -dimensional analogue of Sharkovskii’s ordering, In: Dynamical Systems and Nonlinear Oscillations (G. Ikegami, ed.), World Sci. Press, Singapore 1986, 58–72. (1986) MR0854304
  23. Orlicz, W., Zur Theorie der Differentialgleichung y ' = f ( x , y ) , Bull. Akad. Polon. Sci., Sér. A, 00 (1932), 221–228. (1932) 
  24. Pliss, V. A., Nelokaľnyje problemy teorii kolebanij, Nauka, Moskva 1964. (1964) MR0171962
  25. Robinson, C., Dynamical Systems, CRC Press, Boca Raton, Fl. 1995. (1995) Zbl0853.58001MR1396532
  26. Schirmer, H., A topologist’s view of Sharkovsky’s theorem, Houston J. Math. 11, 3 (1985), 385–395. (1985) Zbl0606.54031MR0808654
  27. Šarkovskij, A. N., Sosuščestvovanije ciklov nepreryvnogo otobraženija v sebja, Ukrain. Matem. Žurn. 1 (1964), 61–71. (1964) 
  28. Ye, X., D-function of a minimal set and an extension of Sharkovskii’s theorem to minimal sets, Ergod. Th. Dynam. Sys. 12 (1992), 365–376. (1992) Zbl0738.54019MR1176630
  29. Zgliczynski, P., 10.1017/S0143385799141749, Ergod. Th. Dynam. Sys. 19, 6 (1999), 1655–1684; Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169–182. (1999) DOI10.1017/S0143385799141749
  30. Zgliczynski, P., 10.1142/S0218127499001346, Internat. J. Bifurc. Chaos 9, 9 (1999), 1867–1876. (1999) Zbl1089.37502MR1728745DOI10.1142/S0218127499001346

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.