The search session has expired. Please query the service again.
The development of iterative methods for solving linear algebraic equations has brought the question of when the employment of these methods is more advantageous than the use of the direct ones. In the paper, a comparison of the direct and iterative methods is attempted. The methods are applied to solving a certain class of boundary-value problems for elliptic partial differential equations which are used for the numerical modeling of electromagnetic fields in geophysics. The numerical experiments...
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed...
We consider the problem of determining the unknown source term in a space fractional diffusion equation from the measured data at the final time . In this way, a methodology involving minimization of the cost functional is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence...
We use a combination of modified Newton method and Tikhonov regularization to obtain a stable approximate solution for nonlinear ill-posed Hammerstein-type operator equations KF(x) = y. It is assumed that the available data is with , K: Z → Y is a bounded linear operator and F: X → Z is a nonlinear operator where X,Y,Z are Hilbert spaces. Two cases of F are considered: where exists (F’(x₀) is the Fréchet derivative of F at an initial guess x₀) and where F is a monotone operator. The parameter...
Natural superconvergence of the least-squares finite element method is surveyed for the one- and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method.
In this paper linear difference equations with several independent variables are considered, whose solutions are functions defined on sets of -dimensional vectors with integer coordinates. These equations could be called partial difference equations. Existence and uniqueness theorems for these equations are formulated and proved, and interconnections of such results with the theory of linear multidimensional digital systems are investigated.
Numerous examples show essential differences of the results...
The paper is concerned with the iterative solution of sparse linear algebraic systems by the Stone incomplete factorization. For the sake of clarity, the algorithm of the Stone incomplete factorization is described and, moreover, some properties of the method are derived in the paper. The conclusion is devoted to a series of numerical experiments focused on the choice of iteration parameters in the Stone method. The model problem considered showe that we can, in general, choose appropriate values...
In this paper, we consider a two-dimensional inverse medium problem from noisy observation data. We propose effective reconstruction algorithms to detect the number, the location and the size of the piecewise constant medium within a body, and then we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear and ill-posed, thus we should consider stable and elegant approaches in order to improve the corresponding approximation. We give several examples to show the viability...
The matrix of the system of linear algebraic equations, arising in the application of the finite element method to one-dimensional problems, is a bandmatrix. In approximations of high order, the band is very wide but the elements situated far from the diagonal of the matrix are negligibly small as compared with the diagonal elements.
The aim of the paper is to show on a model problem that in practice it is possible to work with a matrix of the system the bandwidth of which is reduced. A simple...
An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into “local” subspaces and a global “coarse” space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes’ and Brinkman’s equations. The constant in the corresponding abstract...
An abstract framework for constructing stable decompositions of the spaces corresponding
to general symmetric positive definite problems into “local” subspaces and a global
“coarse” space is developed. Particular applications of this abstract framework include
practically important problems in porous media applications such as: the scalar elliptic
(pressure) equation and the stream function formulation of its mixed form, Stokes’ and
Brinkman’s equations....
The author proves the existence of the multi-parameter asymptotic error expansion to the usual five-point difference scheme for Dirichlet problems for the linear and semilinear elliptic PDE on the so-called uniform and nearly uniform domains. This expansion leads, by Richardson extrapolation, to a simple process for accelerating the convergence of the method. A numerical example is given.
The numerical solution of the model fourth-order elliptic boundary value problem in two dimensions is presented. The iterative procedure in which the biharmonic operator is splitted into two Laplace operators is used. After formulating the finite-difference approximation of the procedure, a formula for the evaluation of the transformed iteration vectors is developed. The Jacobi semi-iterative, Richardson and A.D.I. iterative Poisson solvers are applied to compute one transformed iteration vector....
The paper deals with the application of a fast algorithm for the solution of finite-difference systems for boundary-value problems on a standard domain (e.g. on a rectangle) to the solution of a boundary-value problem on a domain of general shape contained in the standard domain. A simple iterative procedure is suggested for the determination of fictitious right-hand sides for the system on the standard domain so that its solution is the desired one. Under the assumptions that are usual for matrices...
Currently displaying 1 –
14 of
14