Robust optimal PID controller design for attitude stabilization of flexible spacecraft

Chutiphon Pukdeboon

Kybernetika (2018)

  • Volume: 54, Issue: 5, page 1049-1070
  • ISSN: 0023-5954

Abstract

top
This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller.

How to cite

top

Pukdeboon, Chutiphon. "Robust optimal PID controller design for attitude stabilization of flexible spacecraft." Kybernetika 54.5 (2018): 1049-1070. <http://eudml.org/doc/294483>.

@article{Pukdeboon2018,
abstract = {This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller.},
author = {Pukdeboon, Chutiphon},
journal = {Kybernetika},
keywords = {robust optimal control; inverse optimal control; control Lyapunov function; extended state observer; flexible spacecraft},
language = {eng},
number = {5},
pages = {1049-1070},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust optimal PID controller design for attitude stabilization of flexible spacecraft},
url = {http://eudml.org/doc/294483},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Pukdeboon, Chutiphon
TI - Robust optimal PID controller design for attitude stabilization of flexible spacecraft
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 1049
EP - 1070
AB - This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller.
LA - eng
KW - robust optimal control; inverse optimal control; control Lyapunov function; extended state observer; flexible spacecraft
UR - http://eudml.org/doc/294483
ER -

References

top
  1. Bharadwaj, S., Osipchuk, M., Mease, K. D., Park, F. C., 10.2514/2.4327, J. Guidance Control Dynamic 21 (1998), 930-939. DOI10.2514/2.4327
  2. Cloutier, J. R, 10.1109/acc.1997.609663, In: Proc. American Control Conference, Albuquerque 1997, pp. 932-936. DOI10.1109/acc.1997.609663
  3. DiGennaro, S., 10.1109/taes.2003.1238733, IEEE Aerop. Electron. Syst. Mag. 39 (2003), 747-759. DOI10.1109/taes.2003.1238733
  4. Erdong, J., Zhaowei, S., 10.1016/j.ijnonlinmec.2009.12.008, Int. J. Non-linear Mechanics 45 (2010), 348-356. DOI10.1016/j.ijnonlinmec.2009.12.008
  5. Freeman, R. A., Kokotović, P. V., 10.1137/s0363012993258732, SIAM J. Control Optim. 34 (1996), 1365-1391. MR1395839DOI10.1137/s0363012993258732
  6. Guo, B. Z., Zhao, Z., 10.1016/j.sysconle.2011.03.008, Syst. Control Lett. 60 (2011), 420-430. MR2841486DOI10.1016/j.sysconle.2011.03.008
  7. Han, J., Huang, Y., 10.1007/bf02909682, Chinese Sci. Bull. 45 (2000), 1938-1944. MR1802749DOI10.1007/bf02909682
  8. Han, J., 10.1109/tie.2008.2011621, IEEE Trans. Ind. Electron. 56 (2009), 900-906. DOI10.1109/tie.2008.2011621
  9. Horri, N. M, Palmer, P., Roberts, M., 10.1109/taes.2012.6237602, IEEE Trans. Aerospace Electron. Systems 48 (2012), 2437-2457. DOI10.1109/taes.2012.6237602
  10. Hu, Q., 10.1016/j.actaastro.2010.04.018, Acta Astronautica 67 (2010), 572-583. DOI10.1016/j.actaastro.2010.04.018
  11. Hu, Q., Ma, G., 10.1016/j.ast.2005.02.001, Aerospace Science Technol. 9 (2005), 307-317. DOI10.1016/j.ast.2005.02.001
  12. Khalil, H. K., Nonlinear Systems., Prentice-Hall Press, 1996. Zbl1194.93083
  13. Krstić, M., Kokotović, P. V., 10.1016/0167-6911(94)00107-7, Systems Control Lett. 26 (1995), 17-23. MR1347637DOI10.1016/0167-6911(94)00107-7
  14. Krstić, M., Li, Z. H., 10.1109/9.661589, IEEE Trans. Automat. Control 43 (1998), 336-350. MR1614799DOI10.1109/9.661589
  15. Krstić, M., Tsiotras, M. P., 10.1109/9.763225, IEEE Trans. Automat. Control 44 (1999), 1042-1045. MR1690553DOI10.1109/9.763225
  16. Lu, K., Xia, Y., FU, M., 10.1016/j.ins.2012.07.039, Inform. Sci. 220 (2013), 343-366. MR2993689DOI10.1016/j.ins.2012.07.039
  17. Luo, W., Chung, Y. C., Ling, K. V., 10.1109/tac.2005.858694, IEEE Trans. Automat. Control 50 (2005), 1639-1654. MR2182713DOI10.1109/tac.2005.858694
  18. Park, Y., 10.1016/j.ast.2005.01.002, Aerospace Sci. Technol. 9 (2005), 253-259. DOI10.1016/j.ast.2005.01.002
  19. Park, Y., 10.1016/j.ast.2012.11.006, Aerospace Sci. Technol. 28 (2013), 257-265. DOI10.1016/j.ast.2012.11.006
  20. Primb, J. A., Nevistić, V., Doyle, J. C., 10.1111/j.1934-6093.1999.tb00002.x, Asian J. Control 1 (1999), 14-24. DOI10.1111/j.1934-6093.1999.tb00002.x
  21. Pukdeboon, C., Zinober, A. S. I., 10.1016/j.jfranklin.2011.07.006, J. Franklin Inst. 349 (2012), 456-475. MR2890410DOI10.1016/j.jfranklin.2011.07.006
  22. Pukdeboon, C., 10.1155/2011/863092, Math. Problems Engrg. 2011 (2011) Article ID 863092, 1-20. MR2811943DOI10.1155/2011/863092
  23. Sepulchre, R., Freeman, R. A., Kokotović, P. V., 10.1007/978-1-4471-0967-9, Springer-Verlag, New York 1997. MR1481435DOI10.1007/978-1-4471-0967-9
  24. Sharma, R., Tewari, A., 10.1109/tcst.2004.825060, IEEE Trans. Control Systems Technol. 12 (2004), 677-682. DOI10.1109/tcst.2004.825060
  25. Shuster, M. D., A survey of attitude representations., J. Astronaut. Sci. 41 (1993), 439-517. MR1263144
  26. Sontag, E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989), 117-123. MR1014237DOI10.1016/0167-6911(89)90028-5
  27. Sontag, E. D., 10.1007/978-1-4612-0577-7, Springer-Verlag, New York 1998. MR1640001DOI10.1007/978-1-4612-0577-7
  28. Stansbery, D. T., Cloutier, J. R, 10.1109/acc.2000.879525, In: Proc. American Control Conference, Chicago 2000. DOI10.1109/acc.2000.879525
  29. Xin, M., Balakrishnan, S. N., 10.2514/6.2002-1071, In: Proc. 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno 2002. DOI10.2514/6.2002-1071
  30. Xin, M., Balakrishnan, S. N., Stansbery, D. T., 10.2514/6.2004-540, In: Proc. 42th AAIA Aerospace Sciences Meeting and Exhibit, Reno 2004. DOI10.2514/6.2004-540
  31. Xin, M., Pan, H., 10.1016/j.ast.2010.05.009, Aerospace Sci. Technol. 15 (2011), 79-89. DOI10.1016/j.ast.2010.05.009
  32. Utkin, V. I., Sliding Modes in Control and Optimization., Springer-Verlag, Berlin 1992. Zbl0748.93044MR1295845
  33. Wertz, J. R., Spacecraft Attitude Determination and Control., Kluwer Academic, Dordrecht, London 1978. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.