Robust optimal PID controller design for attitude stabilization of flexible spacecraft
Kybernetika (2018)
- Volume: 54, Issue: 5, page 1049-1070
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPukdeboon, Chutiphon. "Robust optimal PID controller design for attitude stabilization of flexible spacecraft." Kybernetika 54.5 (2018): 1049-1070. <http://eudml.org/doc/294483>.
@article{Pukdeboon2018,
abstract = {This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller.},
author = {Pukdeboon, Chutiphon},
journal = {Kybernetika},
keywords = {robust optimal control; inverse optimal control; control Lyapunov function; extended state observer; flexible spacecraft},
language = {eng},
number = {5},
pages = {1049-1070},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust optimal PID controller design for attitude stabilization of flexible spacecraft},
url = {http://eudml.org/doc/294483},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Pukdeboon, Chutiphon
TI - Robust optimal PID controller design for attitude stabilization of flexible spacecraft
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 1049
EP - 1070
AB - This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller.
LA - eng
KW - robust optimal control; inverse optimal control; control Lyapunov function; extended state observer; flexible spacecraft
UR - http://eudml.org/doc/294483
ER -
References
top- Bharadwaj, S., Osipchuk, M., Mease, K. D., Park, F. C., 10.2514/2.4327, J. Guidance Control Dynamic 21 (1998), 930-939. DOI10.2514/2.4327
- Cloutier, J. R, 10.1109/acc.1997.609663, In: Proc. American Control Conference, Albuquerque 1997, pp. 932-936. DOI10.1109/acc.1997.609663
- DiGennaro, S., 10.1109/taes.2003.1238733, IEEE Aerop. Electron. Syst. Mag. 39 (2003), 747-759. DOI10.1109/taes.2003.1238733
- Erdong, J., Zhaowei, S., 10.1016/j.ijnonlinmec.2009.12.008, Int. J. Non-linear Mechanics 45 (2010), 348-356. DOI10.1016/j.ijnonlinmec.2009.12.008
- Freeman, R. A., Kokotović, P. V., 10.1137/s0363012993258732, SIAM J. Control Optim. 34 (1996), 1365-1391. MR1395839DOI10.1137/s0363012993258732
- Guo, B. Z., Zhao, Z., 10.1016/j.sysconle.2011.03.008, Syst. Control Lett. 60 (2011), 420-430. MR2841486DOI10.1016/j.sysconle.2011.03.008
- Han, J., Huang, Y., 10.1007/bf02909682, Chinese Sci. Bull. 45 (2000), 1938-1944. MR1802749DOI10.1007/bf02909682
- Han, J., 10.1109/tie.2008.2011621, IEEE Trans. Ind. Electron. 56 (2009), 900-906. DOI10.1109/tie.2008.2011621
- Horri, N. M, Palmer, P., Roberts, M., 10.1109/taes.2012.6237602, IEEE Trans. Aerospace Electron. Systems 48 (2012), 2437-2457. DOI10.1109/taes.2012.6237602
- Hu, Q., 10.1016/j.actaastro.2010.04.018, Acta Astronautica 67 (2010), 572-583. DOI10.1016/j.actaastro.2010.04.018
- Hu, Q., Ma, G., 10.1016/j.ast.2005.02.001, Aerospace Science Technol. 9 (2005), 307-317. DOI10.1016/j.ast.2005.02.001
- Khalil, H. K., Nonlinear Systems., Prentice-Hall Press, 1996. Zbl1194.93083
- Krstić, M., Kokotović, P. V., 10.1016/0167-6911(94)00107-7, Systems Control Lett. 26 (1995), 17-23. MR1347637DOI10.1016/0167-6911(94)00107-7
- Krstić, M., Li, Z. H., 10.1109/9.661589, IEEE Trans. Automat. Control 43 (1998), 336-350. MR1614799DOI10.1109/9.661589
- Krstić, M., Tsiotras, M. P., 10.1109/9.763225, IEEE Trans. Automat. Control 44 (1999), 1042-1045. MR1690553DOI10.1109/9.763225
- Lu, K., Xia, Y., FU, M., 10.1016/j.ins.2012.07.039, Inform. Sci. 220 (2013), 343-366. MR2993689DOI10.1016/j.ins.2012.07.039
- Luo, W., Chung, Y. C., Ling, K. V., 10.1109/tac.2005.858694, IEEE Trans. Automat. Control 50 (2005), 1639-1654. MR2182713DOI10.1109/tac.2005.858694
- Park, Y., 10.1016/j.ast.2005.01.002, Aerospace Sci. Technol. 9 (2005), 253-259. DOI10.1016/j.ast.2005.01.002
- Park, Y., 10.1016/j.ast.2012.11.006, Aerospace Sci. Technol. 28 (2013), 257-265. DOI10.1016/j.ast.2012.11.006
- Primb, J. A., Nevistić, V., Doyle, J. C., 10.1111/j.1934-6093.1999.tb00002.x, Asian J. Control 1 (1999), 14-24. DOI10.1111/j.1934-6093.1999.tb00002.x
- Pukdeboon, C., Zinober, A. S. I., 10.1016/j.jfranklin.2011.07.006, J. Franklin Inst. 349 (2012), 456-475. MR2890410DOI10.1016/j.jfranklin.2011.07.006
- Pukdeboon, C., 10.1155/2011/863092, Math. Problems Engrg. 2011 (2011) Article ID 863092, 1-20. MR2811943DOI10.1155/2011/863092
- Sepulchre, R., Freeman, R. A., Kokotović, P. V., 10.1007/978-1-4471-0967-9, Springer-Verlag, New York 1997. MR1481435DOI10.1007/978-1-4471-0967-9
- Sharma, R., Tewari, A., 10.1109/tcst.2004.825060, IEEE Trans. Control Systems Technol. 12 (2004), 677-682. DOI10.1109/tcst.2004.825060
- Shuster, M. D., A survey of attitude representations., J. Astronaut. Sci. 41 (1993), 439-517. MR1263144
- Sontag, E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989), 117-123. MR1014237DOI10.1016/0167-6911(89)90028-5
- Sontag, E. D., 10.1007/978-1-4612-0577-7, Springer-Verlag, New York 1998. MR1640001DOI10.1007/978-1-4612-0577-7
- Stansbery, D. T., Cloutier, J. R, 10.1109/acc.2000.879525, In: Proc. American Control Conference, Chicago 2000. DOI10.1109/acc.2000.879525
- Xin, M., Balakrishnan, S. N., 10.2514/6.2002-1071, In: Proc. 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno 2002. DOI10.2514/6.2002-1071
- Xin, M., Balakrishnan, S. N., Stansbery, D. T., 10.2514/6.2004-540, In: Proc. 42th AAIA Aerospace Sciences Meeting and Exhibit, Reno 2004. DOI10.2514/6.2004-540
- Xin, M., Pan, H., 10.1016/j.ast.2010.05.009, Aerospace Sci. Technol. 15 (2011), 79-89. DOI10.1016/j.ast.2010.05.009
- Utkin, V. I., Sliding Modes in Control and Optimization., Springer-Verlag, Berlin 1992. Zbl0748.93044MR1295845
- Wertz, J. R., Spacecraft Attitude Determination and Control., Kluwer Academic, Dordrecht, London 1978.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.