Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults

Ronghua Lei; Li Chen

Kybernetika (2021)

  • Issue: 1, page 160-173
  • ISSN: 0023-5954

Abstract

top
An adaptive sliding mode fault-tolerant controller based on fault observer is proposed for the space robots with joint actuator gain faults. Firstly, the dynamic model of the underactuated space robot is deduced combining conservation law of linear momentum with Lagrange method. Then, the dynamic model of the manipulator joints is obtained by using the mathematical operation of the block matrices, hence the measurement of the angular acceleration of the base attitude can be omitted. Subsequently, a fault observer which can accurately estimate the gain faults is designed, and the estimated results are fed back to the adaptive sliding mode fault-tolerant controller. It is proved that the proposed control algorithm can guarantee the global asymptotic stability of the closed-loop system through the Lyapunov theorem. The simulation results authenticate the effectiveness and feasibility of the control strategy and observation scheme.

How to cite

top

Lei, Ronghua, and Chen, Li. "Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults." Kybernetika (2021): 160-173. <http://eudml.org/doc/298089>.

@article{Lei2021,
abstract = {An adaptive sliding mode fault-tolerant controller based on fault observer is proposed for the space robots with joint actuator gain faults. Firstly, the dynamic model of the underactuated space robot is deduced combining conservation law of linear momentum with Lagrange method. Then, the dynamic model of the manipulator joints is obtained by using the mathematical operation of the block matrices, hence the measurement of the angular acceleration of the base attitude can be omitted. Subsequently, a fault observer which can accurately estimate the gain faults is designed, and the estimated results are fed back to the adaptive sliding mode fault-tolerant controller. It is proved that the proposed control algorithm can guarantee the global asymptotic stability of the closed-loop system through the Lyapunov theorem. The simulation results authenticate the effectiveness and feasibility of the control strategy and observation scheme.},
author = {Lei, Ronghua, Chen, Li},
journal = {Kybernetika},
keywords = {space robot; underactuated; actuator gain fault; fault observer; fault-tolerant},
language = {eng},
number = {1},
pages = {160-173},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults},
url = {http://eudml.org/doc/298089},
year = {2021},
}

TY - JOUR
AU - Lei, Ronghua
AU - Chen, Li
TI - Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 160
EP - 173
AB - An adaptive sliding mode fault-tolerant controller based on fault observer is proposed for the space robots with joint actuator gain faults. Firstly, the dynamic model of the underactuated space robot is deduced combining conservation law of linear momentum with Lagrange method. Then, the dynamic model of the manipulator joints is obtained by using the mathematical operation of the block matrices, hence the measurement of the angular acceleration of the base attitude can be omitted. Subsequently, a fault observer which can accurately estimate the gain faults is designed, and the estimated results are fed back to the adaptive sliding mode fault-tolerant controller. It is proved that the proposed control algorithm can guarantee the global asymptotic stability of the closed-loop system through the Lyapunov theorem. The simulation results authenticate the effectiveness and feasibility of the control strategy and observation scheme.
LA - eng
KW - space robot; underactuated; actuator gain fault; fault observer; fault-tolerant
UR - http://eudml.org/doc/298089
ER -

References

top
  1. Angel, L., Viala, J., , IEEE Latin America Trans. 16 (2018), 1884-1891. DOI
  2. Chutiphon, P., , Kybernetika 54 (2018), 1049-1070. MR3893135DOI
  3. Chutiphon, P., Anuchit, J., , Kybernetika 53 (2017), 653-678. MR3730257DOI
  4. Fan, H. J., Liu, B., Wang, W., Wen, C. Y., , Automatica 51 (2015), 200-209. MR3284769DOI
  5. Guo, T., Chen, W. S., , IET Control Theory Appl. 10 (2016), 3427-3446. MR3643227DOI
  6. He, W., Dong, Y. T., , IEEE Trans. Neural Networks Learning Systems 29 (2018), 1174-1186. DOI
  7. He, W., He, X., Zou, M., Li, H., , IEEE Trans. Control Systems Technol. 27 (2019), 790-797. DOI
  8. Hu, Q. L., Huo, X., Xiao, B., , Int. J. Robust Nonlinear Control 23 (2013), 1737-1752. MR3111507DOI
  9. Q., X., Huang, Chen, L., Anti-dead-zone control based on dynamic surface for space robot with flexible links and elastic base., J. Harbin Engineering University 40 (2019), 2063-2069. 
  10. Li, M., Chen, Y., , IEEE Trans. Industrial Inform. 15 (2019), 193-204. DOI
  11. Lu, Y. B., Huang, P. F., Meng, Z. J., , Advances Space Res. 64 (2019), 847-860. DOI
  12. Ma, H., Zhou, Q., Bai, L., liang, H. J., , IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 287-298. DOI
  13. Meng, D. S., She, Y., Xu, W. F, Lu, W. N, Liang, B., , Multibody System Dynamics 43 (2018), 321-347. MR3825644DOI
  14. Moosavian, S. A. A., Papadopoulos, E., , Advanced Robotics 18 (2004), 223-244. DOI
  15. Ni, Z. Y., Liu, J. G., Wu, Z. G., Shen, X. H., , Chinese J. Aeronautics 32 (2019), 513-530. DOI
  16. Papadopoulos, E., Dubowsky, S., , IEEE Trans. Robotics Automation 7 (1991), 750-758. DOI
  17. Pisculli, A., Felicetti, L., Gasbarri, P., Palmerini, G. B., Sabatini, M., , Aerospace Science Technol. 38 (2014), 30-40. DOI
  18. Shen, Q. K., Jiang, B., Vincent, C., , IEEE Trans. Fuzzy Systems 20 (2012), 652-665. DOI
  19. Shtessel, Y., Taleb, M., Plestan, F., , Automatica 48 (2012), 759-769. Zbl1246.93028MR2912798DOI
  20. Slotine, J., Li, W., , Int. J. Robotics Research 6 (1987), 49-59. MR1021073DOI
  21. Tong, S. C., Huo, B. Y., Li, Y. M., , IEEE Trans. Fuzzy System 22 (2014), 1-15. DOI
  22. Umetani, Y., Yoshida, K., , Acta Astronautica 15 (1987), 981-986. DOI
  23. Umetani, Y., Yoshida, K., 10.1109/70.34766, IEEE Trans. Robotics Automat. 5 (1989), 303-314. DOI10.1109/70.34766
  24. Vafa, Z., Dubowsky, S., On the Dynamics of Space Manipulators Using the Virtual Manipulator, with Applications to Path Planning., J. Astronautical Sci. 38 (1990), 441-472. 
  25. Vafa, Z., Dubowsky, S., , Int. J. Robotics Res. 9 (1990), 3-21. DOI
  26. Yu, X. Y., Chen, L., , J. Mechanical Engrg. 52 (2016), 28-35. DOI
  27. Zhang, Q., Ji, L., Zhou, D. S., Wei, X. P., , Robotica 35 (2017), 861-875. DOI
  28. Zhao, J. L., Yan, S. Z., Wu, J. N., 10.1016/j.actaastro.2014.01.017, Acta Astronautica 98 (2014), 86-96. DOI10.1016/j.actaastro.2014.01.017
  29. Zheng, Z. W., Sun, L., Xie, L. H., , IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 1794-1805. MR3732980DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.