Fractional-order Bessel functions with various applications
Haniye Dehestani; Yadollah Ordokhani; Mohsen Razzaghi
Applications of Mathematics (2019)
- Volume: 64, Issue: 6, page 637-662
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDehestani, Haniye, Ordokhani, Yadollah, and Razzaghi, Mohsen. "Fractional-order Bessel functions with various applications." Applications of Mathematics 64.6 (2019): 637-662. <http://eudml.org/doc/294541>.
@article{Dehestani2019,
abstract = {We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error estimate between the computed approximations and the exact solution and apply it in some examples. Applications are given to three model problems to demonstrate the effectiveness of the proposed method.},
author = {Dehestani, Haniye, Ordokhani, Yadollah, Razzaghi, Mohsen},
journal = {Applications of Mathematics},
keywords = {fractional-order Bessel functions; fractional operational matrix; error estimation},
language = {eng},
number = {6},
pages = {637-662},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fractional-order Bessel functions with various applications},
url = {http://eudml.org/doc/294541},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Dehestani, Haniye
AU - Ordokhani, Yadollah
AU - Razzaghi, Mohsen
TI - Fractional-order Bessel functions with various applications
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 6
SP - 637
EP - 662
AB - We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error estimate between the computed approximations and the exact solution and apply it in some examples. Applications are given to three model problems to demonstrate the effectiveness of the proposed method.
LA - eng
KW - fractional-order Bessel functions; fractional operational matrix; error estimation
UR - http://eudml.org/doc/294541
ER -
References
top- Agarwal, R., O'Regan, D., Hristova, S., 10.1007/s10492-015-0116-4, Appl. Math., Praha 60 (2015), 653-676. (2015) Zbl1374.34005MR3436567DOI10.1007/s10492-015-0116-4
- Baillie, R. T., 10.1016/0304-4076(95)01732-1, J. Econom. 73 (1996), 5-59. (1996) Zbl0854.62099MR1410000DOI10.1016/0304-4076(95)01732-1
- Bhrawy, A. H., Alhamed, Y., Baleanu, D., Al-Zahrani, A., 10.2478/s13540-014-0218-9, Fract. Calc. Appl. Anal. 17 (2014), 1138-1157. (2014) Zbl1312.65166MR3254684DOI10.2478/s13540-014-0218-9
- Bohannan, G. W., 10.1177/1077546307087435, J. Vib. Control 14 (2008), 1487-1498. (2008) MR2463074DOI10.1177/1077546307087435
- Caputo, M., 10.1111/j.1365-246X.1967.tb02303.x, Geophys. J. R. Astron. Soc. 13 (1967), 529-539. (1967) Zbl1210.65130MR2379269DOI10.1111/j.1365-246X.1967.tb02303.x
- Chen, Y., Sun, Y., Liu, L., 10.1016/j.amc.2014.07.050, Appl. Math. Comput. 244 (2014), 847-858. (2014) Zbl1336.65173MR3250624DOI10.1016/j.amc.2014.07.050
- Chen, X., Wang, L., 10.1016/j.camwa.2010.01.037, Comput. Math. Appl. 59 (2010), 2696-2702. (2010) Zbl1193.65145MR2607972DOI10.1016/j.camwa.2010.01.037
- Dehestani, H., Ordokhani, Y., Razzaghi, M., 10.1016/j.amc.2018.05.017, Appl. Math. Comput. 336 (2018), 433-453. (2018) Zbl07130448MR3812592DOI10.1016/j.amc.2018.05.017
- Dehestani, H., Ordokhani, Y., Razzaghi, M., 10.1002/nla.2259, Numer. Linear Algebra Appl. 26 (2019), Article ID e2259, 29 pages. (2019) MR4011892DOI10.1002/nla.2259
- Dehestani, H., Ordokhani, Y., Razzaghi, M., 10.1002/mma.5840, (to appear) in Math. Methods Appl. Sci., 18 pages. DOI10.1002/mma.5840
- Doha, E. H., Bhrawy, A. H., Baleanu, D., Hafez, R. M., 10.1016/j.apnum.2013.11.003, Appl. Numer. Math. 77 (2014), 43-54. (2014) Zbl1302.65175MR3145364DOI10.1016/j.apnum.2013.11.003
- Engheta, N., 10.1109/8.489308, IEEE Trans. Antennas Propag. 44 (1996), 554-566. (1996) Zbl0944.78506MR1382017DOI10.1109/8.489308
- Grosswald, E., 10.1007/bfb0063135, Lecture Notes in Mathematics 698, Springer, Berlin (1978). (1978) Zbl0416.33008MR0520397DOI10.1007/bfb0063135
- He, J., 10.1016/S0045-7825(98)00108-X, Comput. Methods Appl. Mech. Eng. 167 (1998), 57-68. (1998) Zbl0942.76077MR1665221DOI10.1016/S0045-7825(98)00108-X
- He, J., Nonlinear oscillation with fractional derivative and its applications, Proceedings of the International Conference on Vibrating Engineering, Dalian, 1998, pp. 288-291.
- Iqbal, M. A., Saeed, U., Mohyud-Din, S. T., 10.1016/j.ejbas.2014.10.004, Egyptian J. Basic Appl. Sci. 2 (2015), 50-54. (2015) DOI10.1016/j.ejbas.2014.10.004
- Jafari, H., Yousefi, S. A., Firoozjaee, M. A., Momani, S., Khalique, C. M., 10.1016/j.camwa.2011.04.024, Comput. Math. Appl. 62 (2011), 1038-1045. (2011) Zbl1228.65253MR2824691DOI10.1016/j.camwa.2011.04.024
- Kazem, S., Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci. 16 (2013), 3-11. (2013) Zbl1394.34015MR3100782
- Kazem, S., Abbasbandy, S., Kumar, S., 10.1016/j.apm.2012.10.026, Appl. Math. Modelling 37 (2013), 5498-5510. (2013) Zbl06929800MR3020667DOI10.1016/j.apm.2012.10.026
- Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley & Sons, New York (1978). (1978) Zbl0368.46014MR0467220
- Kumar, P., Agrawal, O. P., 10.1016/j.sigpro.2006.02.007, Signal Process. 86 (2006), 2602-2610. (2006) Zbl1172.94436DOI10.1016/j.sigpro.2006.02.007
- Li, Y., 10.1016/j.cnsns.2009.09.020, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 2284-2292. (2010) Zbl1222.65087MR2602712DOI10.1016/j.cnsns.2009.09.020
- Li, X. Y., Wu, B. Y., 10.1016/j.jmaa.2013.07.039, J. Math. Anal. Appl. 409 (2014), 485-493. (2014) Zbl1306.65225MR3095056DOI10.1016/j.jmaa.2013.07.039
- Liu, F., Anh, V., Turner, I., 10.1016/j.cam.2003.09.028, J. Comput. Appl. Math. 166 (2004), 209-219. (2004) Zbl1036.82019MR2057973DOI10.1016/j.cam.2003.09.028
- Mainardi, F., 10.1007/978-3-7091-2664-6_7, Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378, Springer, Vienna (1997), 291-348. (1997) Zbl0917.73004MR1611587DOI10.1007/978-3-7091-2664-6_7
- Mandelbrot, B., 10.1109/TIT.1967.1053992, IEEE Trans. Inf. Theory 13 (1967), 289-298. (1967) Zbl0148.40507MR1713511DOI10.1109/TIT.1967.1053992
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York (1993). (1993) Zbl0789.26002MR1219954
- Moaddy, K., Momani, S., Hashim, I., 10.1016/j.camwa.2010.12.072, Comput. Math. Appl. 61 (2011), 1209-1216. (2011) Zbl1217.65174MR2770523DOI10.1016/j.camwa.2010.12.072
- Momani, S., Al-Khaled, K., 10.1016/j.amc.2004.03.014, Appl. Math. Comput. 162 (2005), 1351-1365. (2005) Zbl1063.65055MR2113975DOI10.1016/j.amc.2004.03.014
- Momani, S., Odibat, Z., 10.1016/j.cam.2006.07.015, J. Comput. Appl. Math. 207 (2007), 96-110. (2007) Zbl1119.65127MR2332951DOI10.1016/j.cam.2006.07.015
- Oldham, K. B., Spanier, J., 10.1016/S0076-5392(09)60219-8, Mathematics in Science and Engineering 111, Academic Press, New York (1974). (1974) Zbl0292.26011MR0361633DOI10.1016/S0076-5392(09)60219-8
- Parand, K., Nikarya, M., 10.1016/j.apm.2014.02.001, Appl. Math. Modelling 38 (2014), 4137-4147. (2014) Zbl06992772MR3233834DOI10.1016/j.apm.2014.02.001
- Parand, K., Nikarya, M., Rad, J. A., 10.1007/s10569-013-9477-8, Celest. Mech. Dyn. Astron. 116 (2013), 97-107. (2013) MR3061372DOI10.1007/s10569-013-9477-8
- Petráš, I., Fractional-order feedback control of a DC motor, J. Electr. Eng. 60 (2009), 117-128. (2009)
- Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
- Rahimkhani, P., Ordokhani, Y., Babolian, E., 10.1016/j.apm.2016.04.026, Appl. Math. Modelling 40 (2016), 8087-8107. (2016) MR3529681DOI10.1016/j.apm.2016.04.026
- Rahimkhani, P., Ordokhani, Y., Babolian, E., 10.1016/j.cam.2016.06.005, J. Comput. Appl. Math. 309 (2017), 493-510. (2017) Zbl06626265MR3539800DOI10.1016/j.cam.2016.06.005
- Rivlin, T. J., An Introduction to the Approximation of Functions, Dover Books on Advanced Mathematics, Dover Publications, New York (1981). (1981) Zbl0489.41001MR0634509
- Saeed, U., Rehman, M. ur, Iqbal, M. A., 10.1016/j.amc.2015.04.113, Appl. Math. Comput. 264 (2015), 431-442. (2015) Zbl1410.65286MR3351623DOI10.1016/j.amc.2015.04.113
- Saeedi, H., Moghadam, M. M., Mollahasani, N., Chuev, G. N., 10.1016/j.cnsns.2010.05.036, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1154-1163. (2011) Zbl1221.65354MR2736623DOI10.1016/j.cnsns.2010.05.036
- Tohidi, E., Nik, H. Saberi, 10.1016/j.apm.2014.06.003, Appl. Math. Modelling 39 (2015), 455-465. (2015) MR3282588DOI10.1016/j.apm.2014.06.003
- Wang, W.-S., Li, S.-F., 10.1016/j.amc.2007.03.064, Appl. Math. Comput. 193 (2007), 285-301. (2007) Zbl1193.34156MR2385784DOI10.1016/j.amc.2007.03.064
- Yin, F., Song, J., Wu, Y., Zhang, L., 10.1155/2013/562140, Abstr. Appl. Anal. 2013 (2013), Article ID 562140, 13 pages. (2013) Zbl1291.65310MR3129359DOI10.1155/2013/562140
- Yuanlu, L., Weiwei, Z., 10.1016/j.amc.2010.03.063, Appl. Math. Comput. 216 (2010), 2276-2285. (2010) Zbl1193.65114MR2647099DOI10.1016/j.amc.2010.03.063
- Yüzbaşi, Ş., Bessel Polynomial Solutions of Linear Differential, Integral and Integro-Differential Equations, M.Sc. Thesis, Graduate School of Natural and Applied Sciences, Mugla University, Kötekli (2009). (2009)
- Yüzbaşi, Ş., 10.1016/j.amc.2012.12.006, Appl. Math. Comput. 219 (2013), 6328-6343. (2013) Zbl1280.65075MR3018474DOI10.1016/j.amc.2012.12.006
- Yüzbaşi, Ş., Şahin, N., Sezer, M., 10.1016/j.camwa.2011.03.097, Comput. Math. Appl. 61 (2011), 3079-3096. (2011) Zbl1222.65154MR2799833DOI10.1016/j.camwa.2011.03.097
- Zhang, X., Tang, B., He, Y., 10.1016/j.camwa.2011.08.032, Comput. Math. Appl. 62 (2011), 3194-3203. (2011) Zbl1232.65120MR2837752DOI10.1016/j.camwa.2011.08.032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.