Making holes in the cone, suspension and hyperspaces of some continua

José G. Anaya; Enrique Castañeda-Alvarado; Alejandro Fuentes-Montes de Oca; Fernando Orozco-Zitli

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 3, page 343-364
  • ISSN: 0010-2628

Abstract

top
A connected topological space Z is unicoherent provided that if Z = A B where A and B are closed connected subsets of Z , then A B is connected. Let Z be a unicoherent space, we say that z Z makes a hole in Z if Z - { z } is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.

How to cite

top

Anaya, José G., et al. "Making holes in the cone, suspension and hyperspaces of some continua." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 343-364. <http://eudml.org/doc/294553>.

@article{Anaya2018,
abstract = {A connected topological space $Z$ is unicoherent provided that if $Z=A\cup B$ where $A$ and $B$ are closed connected subsets of $Z$, then $A\cap B$ is connected. Let $Z$ be a unicoherent space, we say that $z\in Z$ makes a hole in $Z$ if $Z-\lbrace z\rbrace $ is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.},
author = {Anaya, José G., Castañeda-Alvarado, Enrique, Oca, Alejandro Fuentes-Montes de, Orozco-Zitli, Fernando},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {continuum; hyperspace; hyperspace suspension; property (b); unicoherence; cone; suspension},
language = {eng},
number = {3},
pages = {343-364},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Making holes in the cone, suspension and hyperspaces of some continua},
url = {http://eudml.org/doc/294553},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Anaya, José G.
AU - Castañeda-Alvarado, Enrique
AU - Oca, Alejandro Fuentes-Montes de
AU - Orozco-Zitli, Fernando
TI - Making holes in the cone, suspension and hyperspaces of some continua
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 343
EP - 364
AB - A connected topological space $Z$ is unicoherent provided that if $Z=A\cup B$ where $A$ and $B$ are closed connected subsets of $Z$, then $A\cap B$ is connected. Let $Z$ be a unicoherent space, we say that $z\in Z$ makes a hole in $Z$ if $Z-\lbrace z\rbrace $ is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.
LA - eng
KW - continuum; hyperspace; hyperspace suspension; property (b); unicoherence; cone; suspension
UR - http://eudml.org/doc/294553
ER -

References

top
  1. Anaya J. G., 10.1016/j.topol.2006.09.017, Topology Appl. 154 (2007), no. 10, 2000–2008. MR2324910DOI10.1016/j.topol.2006.09.017
  2. Anaya J. G., Making holes in the hyperspaces of a Peano continuum, Topology Proc. 37 (2011), 1–14. MR2594371
  3. Anaya J. G., Castañeda-Alvarado E., Martínez-Cortez J. A., The fixed point property in symmetric products of some continua, Questions Answers Gen. Topology 34 (2016), no. 1, 29–36. MR3467822
  4. Anaya J. G., Castañeda-Alvarado E., Orozco-Zitli F., 10.4236/apm.2012.22020, Adv. in Pure Math. 2 (2012), 133–138. DOI10.4236/apm.2012.22020
  5. Anaya J. G., Maya D., Orozco-Zitli F., Making holes in the second symmetric products of dendrites and some fan, CIENCIA Ergo Sum 19 (2012), no. 1, 83–92. 
  6. Borsuk K., 10.4064/fm-17-1-171-209, Fund. Math. 17 (1931), 171–209 (French). DOI10.4064/fm-17-1-171-209
  7. Borsuk K., Ulam S., 10.1090/S0002-9904-1931-05290-3, Bull. Amer. Math. Soc. 37 (1931), no. 12, 875–882. MR1562283DOI10.1090/S0002-9904-1931-05290-3
  8. Castañeda E., Embedding symetric products in Euclidean spaces, Continuum theory, Denton, 1999, Lecture Notes in Pure and Appl. Math., 230, Marcel Dekker, New York, 2002, pp. 67–79. MR2001435
  9. Castañeda E., Illanes A., 10.1016/j.topol.2005.04.006, Topology Appl. 153 (2006), no. 9, 1434–1450. Zbl1095.54006MR2211209DOI10.1016/j.topol.2005.04.006
  10. Eilenberg S., 10.4064/fm-26-1-61-112, Fund. Math. 26 (1936), 61–112 (French). DOI10.4064/fm-26-1-61-112
  11. Escobedo R., López M. de J., Macías S., 10.1016/j.topol.2003.08.024, Topology Appl. 138 (2004), no. 1–3, 109–124. MR2035475DOI10.1016/j.topol.2003.08.024
  12. Ganea T., Covering spaces and cartesian products, Ann. Soc. Polon. Math. 25 (1952), 30–42. MR0056919
  13. García-Máynez A., Illanes A., A survey on unicoherence and related properties, An. Inst. Mat. Univ. Nac. Autónoma México 29 (1989), 17–67. MR1119888
  14. Illanes A., The hyperspace C 2 ( X ) for a finite graph X is unique, Glas. Mat. Ser. III 37(57) (2002), no. 2, 347–363. MR1951538
  15. Illanes A., Finite graphs X have unique hyperspace C n ( X ) , Proc. of the Spring Topology and Dynamical Systems Conf., Topology Proc. 27 (2003), no. 1, 179–188. MR2048928
  16. Illanes A., A model for hyperspace C 2 ( S 1 ) , Questions Answers Gen. Topology 22 (2004), no. 2, 117–130. MR2092836
  17. Illanes A., Nadler S.B., Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. Zbl0933.54009MR1670250
  18. Keller O.-H., 10.1007/BF01455844, Math. Ann. 105 (1931), no. 1, 748–758 (German). MR1512740DOI10.1007/BF01455844
  19. Kuratowski C., 10.4064/fm-8-1-137-150, Fund. Math. 8 (1926), 137–150 (French). DOI10.4064/fm-8-1-137-150
  20. Kuratowski K., 10.4064/fm-13-1-307-318, Fund. Math. 13 (1929), 307–318 (French). DOI10.4064/fm-13-1-307-318
  21. Macías S., 10.1016/S0166-8641(97)00233-2, Topology Appl. 92 (1999), no. 2, 173–182. MR1669815DOI10.1016/S0166-8641(97)00233-2
  22. Macías S., 10.1016/S0166-8641(99)00151-0, Topology Appl. 109 (2001), no. 2, 237–256. MR1806337DOI10.1016/S0166-8641(99)00151-0
  23. Mardešić S., 10.4064/fm-46-1-29-45, Fund. Math. 46 (1958), 29–45. MR0099027DOI10.4064/fm-46-1-29-45
  24. Nadler S. B. Jr., 10.4153/CMB-1971-033-8, Canad. Math. Bull. 14 (1971), 183–189. MR0310851DOI10.4153/CMB-1971-033-8
  25. Nadler S. B. Jr., 10.1090/S0002-9947-1977-0464191-0, Trans. Amer. Math. Soc. 230 (1977), 321–345. MR0464191DOI10.1090/S0002-9947-1977-0464191-0
  26. Nadler S. B. Jr., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978. Zbl1125.54001MR0500811
  27. Nadler S. B. Jr., A fixed point theorem for hyperspaces suspensions, Houston J. Math. 5 (1979), no. 1, 125–132. MR0533646
  28. Nadler S. B. Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl0757.54009MR1192552
  29. Rudin M. E., 10.4064/fm-73-2-179-186, Fund. Math. 73 (1971/72), no. 2, 179–186. MR0293583DOI10.4064/fm-73-2-179-186
  30. Schori R. M., 10.4064/fm-63-1-77-88, Fund. Math. 63 (1968), 77–88. MR0232336DOI10.4064/fm-63-1-77-88
  31. Whyburn G. T., 10.1090/coll/028, American Mathematical Society Colloquium Publications, 28, American Mathematical Society, New York, 1942. MR0007095DOI10.1090/coll/028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.