Making holes in the cone, suspension and hyperspaces of some continua
José G. Anaya; Enrique Castañeda-Alvarado; Alejandro Fuentes-Montes de Oca; Fernando Orozco-Zitli
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 3, page 343-364
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAnaya, José G., et al. "Making holes in the cone, suspension and hyperspaces of some continua." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 343-364. <http://eudml.org/doc/294553>.
@article{Anaya2018,
abstract = {A connected topological space $Z$ is unicoherent provided that if $Z=A\cup B$ where $A$ and $B$ are closed connected subsets of $Z$, then $A\cap B$ is connected. Let $Z$ be a unicoherent space, we say that $z\in Z$ makes a hole in $Z$ if $Z-\lbrace z\rbrace $ is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.},
author = {Anaya, José G., Castañeda-Alvarado, Enrique, Oca, Alejandro Fuentes-Montes de, Orozco-Zitli, Fernando},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {continuum; hyperspace; hyperspace suspension; property (b); unicoherence; cone; suspension},
language = {eng},
number = {3},
pages = {343-364},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Making holes in the cone, suspension and hyperspaces of some continua},
url = {http://eudml.org/doc/294553},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Anaya, José G.
AU - Castañeda-Alvarado, Enrique
AU - Oca, Alejandro Fuentes-Montes de
AU - Orozco-Zitli, Fernando
TI - Making holes in the cone, suspension and hyperspaces of some continua
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 343
EP - 364
AB - A connected topological space $Z$ is unicoherent provided that if $Z=A\cup B$ where $A$ and $B$ are closed connected subsets of $Z$, then $A\cap B$ is connected. Let $Z$ be a unicoherent space, we say that $z\in Z$ makes a hole in $Z$ if $Z-\lbrace z\rbrace $ is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.
LA - eng
KW - continuum; hyperspace; hyperspace suspension; property (b); unicoherence; cone; suspension
UR - http://eudml.org/doc/294553
ER -
References
top- Anaya J. G., 10.1016/j.topol.2006.09.017, Topology Appl. 154 (2007), no. 10, 2000–2008. MR2324910DOI10.1016/j.topol.2006.09.017
- Anaya J. G., Making holes in the hyperspaces of a Peano continuum, Topology Proc. 37 (2011), 1–14. MR2594371
- Anaya J. G., Castañeda-Alvarado E., Martínez-Cortez J. A., The fixed point property in symmetric products of some continua, Questions Answers Gen. Topology 34 (2016), no. 1, 29–36. MR3467822
- Anaya J. G., Castañeda-Alvarado E., Orozco-Zitli F., 10.4236/apm.2012.22020, Adv. in Pure Math. 2 (2012), 133–138. DOI10.4236/apm.2012.22020
- Anaya J. G., Maya D., Orozco-Zitli F., Making holes in the second symmetric products of dendrites and some fan, CIENCIA Ergo Sum 19 (2012), no. 1, 83–92.
- Borsuk K., 10.4064/fm-17-1-171-209, Fund. Math. 17 (1931), 171–209 (French). DOI10.4064/fm-17-1-171-209
- Borsuk K., Ulam S., 10.1090/S0002-9904-1931-05290-3, Bull. Amer. Math. Soc. 37 (1931), no. 12, 875–882. MR1562283DOI10.1090/S0002-9904-1931-05290-3
- Castañeda E., Embedding symetric products in Euclidean spaces, Continuum theory, Denton, 1999, Lecture Notes in Pure and Appl. Math., 230, Marcel Dekker, New York, 2002, pp. 67–79. MR2001435
- Castañeda E., Illanes A., 10.1016/j.topol.2005.04.006, Topology Appl. 153 (2006), no. 9, 1434–1450. Zbl1095.54006MR2211209DOI10.1016/j.topol.2005.04.006
- Eilenberg S., 10.4064/fm-26-1-61-112, Fund. Math. 26 (1936), 61–112 (French). DOI10.4064/fm-26-1-61-112
- Escobedo R., López M. de J., Macías S., 10.1016/j.topol.2003.08.024, Topology Appl. 138 (2004), no. 1–3, 109–124. MR2035475DOI10.1016/j.topol.2003.08.024
- Ganea T., Covering spaces and cartesian products, Ann. Soc. Polon. Math. 25 (1952), 30–42. MR0056919
- García-Máynez A., Illanes A., A survey on unicoherence and related properties, An. Inst. Mat. Univ. Nac. Autónoma México 29 (1989), 17–67. MR1119888
- Illanes A., The hyperspace for a finite graph is unique, Glas. Mat. Ser. III 37(57) (2002), no. 2, 347–363. MR1951538
- Illanes A., Finite graphs have unique hyperspace , Proc. of the Spring Topology and Dynamical Systems Conf., Topology Proc. 27 (2003), no. 1, 179–188. MR2048928
- Illanes A., A model for hyperspace , Questions Answers Gen. Topology 22 (2004), no. 2, 117–130. MR2092836
- Illanes A., Nadler S.B., Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. Zbl0933.54009MR1670250
- Keller O.-H., 10.1007/BF01455844, Math. Ann. 105 (1931), no. 1, 748–758 (German). MR1512740DOI10.1007/BF01455844
- Kuratowski C., 10.4064/fm-8-1-137-150, Fund. Math. 8 (1926), 137–150 (French). DOI10.4064/fm-8-1-137-150
- Kuratowski K., 10.4064/fm-13-1-307-318, Fund. Math. 13 (1929), 307–318 (French). DOI10.4064/fm-13-1-307-318
- Macías S., 10.1016/S0166-8641(97)00233-2, Topology Appl. 92 (1999), no. 2, 173–182. MR1669815DOI10.1016/S0166-8641(97)00233-2
- Macías S., 10.1016/S0166-8641(99)00151-0, Topology Appl. 109 (2001), no. 2, 237–256. MR1806337DOI10.1016/S0166-8641(99)00151-0
- Mardešić S., 10.4064/fm-46-1-29-45, Fund. Math. 46 (1958), 29–45. MR0099027DOI10.4064/fm-46-1-29-45
- Nadler S. B. Jr., 10.4153/CMB-1971-033-8, Canad. Math. Bull. 14 (1971), 183–189. MR0310851DOI10.4153/CMB-1971-033-8
- Nadler S. B. Jr., 10.1090/S0002-9947-1977-0464191-0, Trans. Amer. Math. Soc. 230 (1977), 321–345. MR0464191DOI10.1090/S0002-9947-1977-0464191-0
- Nadler S. B. Jr., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978. Zbl1125.54001MR0500811
- Nadler S. B. Jr., A fixed point theorem for hyperspaces suspensions, Houston J. Math. 5 (1979), no. 1, 125–132. MR0533646
- Nadler S. B. Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl0757.54009MR1192552
- Rudin M. E., 10.4064/fm-73-2-179-186, Fund. Math. 73 (1971/72), no. 2, 179–186. MR0293583DOI10.4064/fm-73-2-179-186
- Schori R. M., 10.4064/fm-63-1-77-88, Fund. Math. 63 (1968), 77–88. MR0232336DOI10.4064/fm-63-1-77-88
- Whyburn G. T., 10.1090/coll/028, American Mathematical Society Colloquium Publications, 28, American Mathematical Society, New York, 1942. MR0007095DOI10.1090/coll/028
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.