On the hyperspace
José G. Anaya; Enrique Castañeda-Alvarado; José A. Martínez-Cortez
Commentationes Mathematicae Universitatis Carolinae (2021)
- Issue: 2, page 201-224
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAnaya, José G., Castañeda-Alvarado, Enrique, and Martínez-Cortez, José A.. "On the hyperspace $C_n(X)/{C_n}_K(X)$." Commentationes Mathematicae Universitatis Carolinae (2021): 201-224. <http://eudml.org/doc/298106>.
@article{Anaya2021,
abstract = {Let $X$ be a continuum and $n$ a positive integer. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of $X$ with at most $n$ components, endowed with the Hausdorff metric. For $K$ compact subset of $X$, define the hyperspace $\{C_n\}_K(X)=\lbrace A\in C_n(X)\colon K\subset A\rbrace $. In this paper, we consider the hyperspace $C_K^n(X)=C_n(X)/\{C_n\}_K(X)$, which can be a tool to study the space $C_n(X)$. We study this hyperspace in the class of finite graphs and in general, we prove some properties such as: aposyndesis, local connectedness, arcwise disconnectedness, and contractibility.},
author = {Anaya, José G., Castañeda-Alvarado, Enrique, Martínez-Cortez, José A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperspace; continuum; containment hyperspace; aposyndesis; finite graph; Peano continuum; contractibility},
language = {eng},
number = {2},
pages = {201-224},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the hyperspace $C_n(X)/\{C_n\}_K(X)$},
url = {http://eudml.org/doc/298106},
year = {2021},
}
TY - JOUR
AU - Anaya, José G.
AU - Castañeda-Alvarado, Enrique
AU - Martínez-Cortez, José A.
TI - On the hyperspace $C_n(X)/{C_n}_K(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 2
SP - 201
EP - 224
AB - Let $X$ be a continuum and $n$ a positive integer. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of $X$ with at most $n$ components, endowed with the Hausdorff metric. For $K$ compact subset of $X$, define the hyperspace ${C_n}_K(X)=\lbrace A\in C_n(X)\colon K\subset A\rbrace $. In this paper, we consider the hyperspace $C_K^n(X)=C_n(X)/{C_n}_K(X)$, which can be a tool to study the space $C_n(X)$. We study this hyperspace in the class of finite graphs and in general, we prove some properties such as: aposyndesis, local connectedness, arcwise disconnectedness, and contractibility.
LA - eng
KW - hyperspace; continuum; containment hyperspace; aposyndesis; finite graph; Peano continuum; contractibility
UR - http://eudml.org/doc/298106
ER -
References
top- Anaya J. G., Castañeda-Alvarado E., Fuentes-Montes de Oca A., Orozco-Zitli F., Making holes in the cone, suspension and hyperspaces of some continua, Comment. Math. Univ. Carolin. 59 (2018), no. 3, 343–364. MR3861557
- Baik B. S., Hur K., Rhee C. J., -sets and contractibility, J. Korean Math. Soc. 34 (1997), no. 2, 309–319. MR1455544
- Bennett D. E., 10.2140/pjm.1971.37.585, Pacific J. Math. 37 (1971), 585–589. MR0305370DOI10.2140/pjm.1971.37.585
- Camargo J., Macías S., Quotients of -fold hyperspaces, Topology Appl. 197 (2016), 154–166. MR3426913
- Castañeda-Alvarado E., Mondragón R. C., Ordoñez N., Orozco-Zitli F., The hyperspace , Bull. Iranian Math. Soc. 47 (2021), no. 3, 659–678. MR4249170
- Charatonik J. J., 10.1016/S0166-8641(89)80009-4, Topology Appl. 33 (1989), no. 2, 209–215. MR1020282DOI10.1016/S0166-8641(89)80009-4
- Charatonik J. J., Recent research in hyperspace theory, Extracta Math. 18 (2003), no. 2, 235–262. MR2002449
- Duda R., 10.4064/fm-62-3-265-286, Fund. Math. 62 (1968), 265–286. MR0236881DOI10.4064/fm-62-3-265-286
- Escobedo R., López M. de J., Macías S., 10.1016/j.topol.2003.08.024, Topology Appl. 138 (2004), no. 1–3, 109–124. MR2035475DOI10.1016/j.topol.2003.08.024
- Hernández-Gutiérrez R., Martínez-de-la-Vega V., 10.1016/j.topol.2013.06.001, Topology Appl. 160 (2013), no. 13, 1577–1587. MR3091331DOI10.1016/j.topol.2013.06.001
- Illanes Mejía A., Hiperespacios de continuos, Aportaciones Matemáticas, Serie Textos, 28, Sociedad Matemática Mexicana, México, 2004 (Spanish). MR2111741
- Illanes A., Nadler S. B., Jr., Hyperspaces, Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. MR1670250
- Macías J. C., 10.3336/gm.43.2.14, Glas. Mat. Ser. III 43(63) (2008), 439–449. MR2460710DOI10.3336/gm.43.2.14
- Macías S., 10.1090/S0002-9939-97-04175-0, Proc. Amer. Math. Soc. 125 (1997), no. 10, 3069–3073. MR1425134DOI10.1090/S0002-9939-97-04175-0
- Macías S., On the hyperspaces of a continuum . II, Proc. of the 2000 Topology and Dynamics Conf., San Antonio, Topology Proc. 25 (2000), 255–276. MR1875596
- Macías S., 10.1016/S0166-8641(99)00151-0, Topology Appl. 109 (2001), no. 2, 237–256. MR1806337DOI10.1016/S0166-8641(99)00151-0
- Macías S., 10.1016/j.topol.2003.08.023, Topology Appl. 138 (2004), no. 1–3, 125–138. MR2035476DOI10.1016/j.topol.2003.08.023
- Macías S., On the -fold hyperspace suspension of continua. II, Glas. Mat. Ser. III 41(61) (2006), no. 2, 335–343. MR2282743
- Martínez-de-la-Vega V., Dimension of -fold hyperspaces of graphs, Houston J. Math. 32 (2006), no. 3, 783–799. MR2247910
- Nadler S. B., Jr., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978. Zbl1125.54001MR0500811
- Nadler S. B., Jr., A fixed point theorem for hyperspaces suspensions, Houston J. Math. 5 (1979), no. 1, 125–132. MR0533646
- Nadler S. B., Jr., Continuum Theory, An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl0819.54015MR1192552
- Nadler S. B., Jr., Dimension Theory, An Introduction with Exercises, Aportaciones Matemáticas, Serie Textos, 18, Sociedad Matemática Mexicana, México, 2002. MR1925171
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.