A characterization of hereditarily decomposable snake-like continua
A symmetric, idempotent, continuous binary operation on a space is called a mean. In this paper, we provide a criterion for the non-existence of mean on a certain class of continua which includes tree-like continua. This generalizes a result of Bell and Watson. We also prove that any hereditarily indecomposable circle-like continuum admits no mean.
In his paper "Continuous mappings on continua" [5], T. Maćkowiak collected results concerning mappings on metric continua. These results are theorems, counterexamples, and unsolved problems and are listed in a series of tables at the ends of chapters. It is the purpose of the present paper to provide solutions (three proofs and one example) to four of those problems.
A procedure for obtaining points of irreducibility for an inverse limit on intervals is developed. In connection with this, the following are included. A semiatriodic continuum is defined to be a continuum that contains no triod with interior. Characterizations of semiatriodic and unicoherent continua are given, as well as necessary and sufficient conditions for a subcontinuum of a semiatriodic and unicoherent continuum M to lie within the interior of a proper subcontinuum of M.
A connected topological space is unicoherent provided that if where and are closed connected subsets of , then is connected. Let be a unicoherent space, we say that makes a hole in if is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.