Optimal control problem and maximum principle for fractional order cooperative systems
Kybernetika (2019)
- Volume: 55, Issue: 2, page 337-358
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBahaa, G. M.. "Optimal control problem and maximum principle for fractional order cooperative systems." Kybernetika 55.2 (2019): 337-358. <http://eudml.org/doc/294568>.
@article{Bahaa2019,
abstract = {In this paper, by using the classical control theory, the optimal control problem for fractional order cooperative system governed by Schrödinger operator is considered. The fractional time derivative is considered in a Riemann-Liouville and Caputo senses. The maximum principle for this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we show that the considered optimal control problem has a unique solution. The performance index of a (FOCP) is considered as a function of both state and control variables, and the dynamic constraints are expressed by a Partial Fractional Differential Equation (PFDE). Finally, we impose some constraints on the boundary control. Interpreting the Euler-Lagrange first order optimality condition with an adjoint problem defined by means of right fractional Caputo derivative, we obtain an optimality system for the optimal control. Some examples are analyzed in details.},
author = {Bahaa, G. M.},
journal = {Kybernetika},
keywords = {fractional optimal control; cooperative systems; ; Schrodinger operator; maximum principle; existence of solution; boundary control; optimality conditions; fractional Caputo derivatives; Riemann–Liouville derivatives},
language = {eng},
number = {2},
pages = {337-358},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimal control problem and maximum principle for fractional order cooperative systems},
url = {http://eudml.org/doc/294568},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Bahaa, G. M.
TI - Optimal control problem and maximum principle for fractional order cooperative systems
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 337
EP - 358
AB - In this paper, by using the classical control theory, the optimal control problem for fractional order cooperative system governed by Schrödinger operator is considered. The fractional time derivative is considered in a Riemann-Liouville and Caputo senses. The maximum principle for this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we show that the considered optimal control problem has a unique solution. The performance index of a (FOCP) is considered as a function of both state and control variables, and the dynamic constraints are expressed by a Partial Fractional Differential Equation (PFDE). Finally, we impose some constraints on the boundary control. Interpreting the Euler-Lagrange first order optimality condition with an adjoint problem defined by means of right fractional Caputo derivative, we obtain an optimality system for the optimal control. Some examples are analyzed in details.
LA - eng
KW - fractional optimal control; cooperative systems; ; Schrodinger operator; maximum principle; existence of solution; boundary control; optimality conditions; fractional Caputo derivatives; Riemann–Liouville derivatives
UR - http://eudml.org/doc/294568
ER -
References
top- Agrawal, O. P., 10.1016/S0022-247X(02)00180-4, Math. Anal. Appl. 272 (2002), 368-379. MR1930721DOI10.1016/S0022-247X(02)00180-4
- Agrawal, O P., 10.1007/s11071-004-3764-6, Nonlinear Dynamics 38 (2004), 323-337. MR2112177DOI10.1007/s11071-004-3764-6
- Agrawal, O. P., Baleanu, D. A., 10.1177/1077546307077467, J. Vibration Control 13 (2007), 9-10, 1269-1281. MR2356715DOI10.1177/1077546307077467
- Al-Refai, M., Luchko, Yu., 10.2478/s13540-014-0181-5, Fract. Calc. Appl. Anal. 17 (2014), 2, 483-498. MR3181067DOI10.2478/s13540-014-0181-5
- Al-Refai, M., Luchko, Yu., 10.1016/j.amc.2014.12.127, Appl. Math. Comput. 257 (2015), 40-51. MR3320647DOI10.1016/j.amc.2014.12.127
- Al-Refai, M., Luchko, Yu., 10.1515/anly-2015-5011, Analysis 36 (2016), 123-133. MR3491861DOI10.1515/anly-2015-5011
- Bahaa, G. M., 10.1186/s13662-016-0976-2, IMA J. Math. Control Inform. 35 (2018), 1, 107-122. MR3802084DOI10.1186/s13662-016-0976-2
- Bahaa, G. M., Fractional optimal control problem for differential system with control constraints., Filomat J. 30 (2016), 8, 2177-2189. MR3583154
- Bahaa, G. M., 10.1186/s13662-017-1121-6, Advances Difference Equations 2017 (2017), 69, 1-19. MR3615527DOI10.1186/s13662-017-1121-6
- Bahaa, G. M., 10.1093/imamci/dnl001, IMA J. Math. Control Inform. 24 (2007), 1-12. MR2310985DOI10.1093/imamci/dnl001
- Bahaa, G. M., Hamiaz, A., Optimality conditions for fractional differential inclusions with non-singular Mittag-Leffler Kernel., Adv. Difference Equations (2018), 257. MR3833842
- Baleanu, D. A., Agrawal, O. P., 10.1007/s10582-006-0406-x, Czechosl. J. Phys. 56 (2006), 10/11 1087-1092. MR2282282DOI10.1007/s10582-006-0406-x
- Bastos, N. R. O., Mozyrska, D., Torres, D. F. M., Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform., Int. J. Math. Comput. 11 (2011), J11, 1-9. MR2800417
- Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M., 10.3934/dcds.2011.29.417, Discrete Cont. Dyn. Syst. 29 (2011), 2, 417-437. Zbl1209.49020MR2728463DOI10.3934/dcds.2011.29.417
- Eidelman, S. D., Kochubei, A. N., 10.1016/j.jde.2003.12.002, J. Diff. Equat. 199(2004), 211-255. MR2047909DOI10.1016/j.jde.2003.12.002
- El-Sayed, A. M. A., Fractional differential equations., Kyungpook Math. J. 28 (1988), 2, 18-22. MR1053036
- Fleckinger, J., 10.1017/s0308210500020357, Proc. Royal Soc. Edinburg 89A (1981), 355-361. MR0635770DOI10.1017/s0308210500020357
- Fleckinger, J., Method of sub-super solutions for some elliptic systems defined on ., Preprint UMR MIP, Universite Toulouse 3 (1994).
- Fleckinger, J., Hernándes, J., Thélin, F. de, On maximum principle and existence of positive solutions for cooperative elliptic systems., Diff. Int. Eqns. 8 (1995), 69-85. MR1296110
- Fleckinger, J., Serag, H., Semilinear cooperative elliptic systems on ., Rend. di Mat. 15 (1995), VII, 89-108. MR1330181
- Gastao, S. F. Frederico, Torres, D. F. M., Fractional optimal control in the sense of Caputo and the fractional Noether's theorem., Int. Math. Forum 3 (2008), 10, 479-493. MR2386201
- Kochubei, A. N., Fractional order diffusion., Diff. Equations 26 (1990), 485-492. MR1061448
- Kochubei, A. N., 10.1007/s00020-011-1918-8, Integr. Equat. Oper. Theory 71 (2011), 583-600. MR2854867DOI10.1007/s00020-011-1918-8
- Kotarski, W., El-Saify, H. A., Bahaa, G. M., 10.1093/imamci/19.4.461, IMA J. Math. Control Inform. 19 (2002), 4, 461-476. MR1949014DOI10.1093/imamci/19.4.461
- Lions, J. L., Optimal Control Of Systems Governed By Partial Differential Equations., Springer-Verlag, Band 170 (1971). MR0271512
- Lions, J. L., Magenes, E., 10.1007/978-3-642-65217-2, Springer-Verlag, New York 1972. MR0350177DOI10.1007/978-3-642-65217-2
- Liu, Y., Rundell, W., Yamamoto, M., 10.1515/fca-2016-0048, Fract. Calc. Appl. Anal. 19 (2016), 4, 888-906. MR3543685DOI10.1515/fca-2016-0048
- Liu, Z., Zeng, Sh., Bai, Y., 10.1515/fca-2016-0011, Fract. Calc. Appl. Anal. 19 (2016), 1, 188-211. MR3475416DOI10.1515/fca-2016-0011
- Luchko, Yu., 10.1016/j.jmaa.2008.10.018, J. Math. Anal. Appl. 351 (2009), 218-223. MR2472935DOI10.1016/j.jmaa.2008.10.018
- Luchko, Yu., Boundary value problems for the generalized time fractional diffusion equation of distributed order., Fract. Calc. Appl. Anal. 12 (2009), 409-422. MR2598188
- Luchko, Yu., 10.1016/j.camwa.2009.08.015, Comput. Math. Appl. 59 (2010), 1766-1772. MR2595950DOI10.1016/j.camwa.2009.08.015
- Luchko, Yu., 10.1016/j.jmaa.2010.08.048, J. Math. Anal. Appl. 374 (2011), 538-548. MR2729240DOI10.1016/j.jmaa.2010.08.048
- Luchko, Yu., Yamamoto, M., 10.1515/fca-2016-0036, Fract. Calc. Appl. Anal. 19 (2016), 3, 676-695. MR3563605DOI10.1515/fca-2016-0036
- Matychyna, I., Onyshchenkob, V., 10.1016/j.cam.2017.10.016, J. Comput. Appl. Math. 339 (2018), 245-257. MR3787691DOI10.1016/j.cam.2017.10.016
- Mophou, G. M., 10.1016/j.camwa.2010.10.030, Comput. Math. Appl. 61 (2011), 68-78. MR2739436DOI10.1016/j.camwa.2010.10.030
- Mophou, G. M., 10.1016/j.camwa.2011.04.044, Comput. Math. Appl. 62 (2011), 1413-1426. MR2824729DOI10.1016/j.camwa.2011.04.044
- Oldham, K. B., Spanier, J., The Fractional Calculus., Academic Press, New York 1974. Zbl0292.26011MR0361633
- Protter, M., Weinberger, H., 10.1007/978-1-4612-5282-5, Prentice Hall, Englewood Clifs, 1967. MR0219861DOI10.1007/978-1-4612-5282-5
- Ye, H., Liu, F., Anh, V., Turner, I., 10.1016/j.amc.2013.11.015, Appl. Math. Comput. 227 (2014), 531-540. MR3146339DOI10.1016/j.amc.2013.11.015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.