Displaying similar documents to “Optimal control problem and maximum principle for fractional order cooperative systems”

Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems

Kobra Rabiei, Yadollah Ordokhani (2018)

Applications of Mathematics

Similarity:

A new hybrid of block-pulse functions and Boubaker polynomials is constructed to solve the inequality constrained fractional optimal control problems (FOCPs) with quadratic performance index and fractional variational problems (FVPs). First, the general formulation of the Riemann-Liouville integral operator for Boubaker hybrid function is presented for the first time. Then it is applied to reduce the problems to optimization problems, which can be solved by the existing method. In this...

Minimum energy control of fractional positive continuous-time linear systems with bounded inputs

Tadeusz Kaczorek (2014)

International Journal of Applied Mathematics and Computer Science

Similarity:

A minimum energy control problem for fractional positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.

Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders

Łukasz Sajewski (2017)

International Journal of Applied Mathematics and Computer Science

Similarity:

Reachability and minimum energy control of descriptor fractional discrete-time linear systems with different fractional orders are addressed. Using the Weierstrass-Kronecker decomposition theorem of the regular pencil, a solution to the state equation of descriptor fractional discrete-time linear systems with different fractional orders is given. The reachability condition of this class of systems is presented and used for solving the minimum energy control problem. The discussion is...

Fractional Roesser problem and its optimization

Rafał Kamocki (2014)

Banach Center Publications

Similarity:

In the paper, a fractional continuous Roesser model is considered. Existence and uniqueness of a solution and continuous dependence of solutions on controls of the nonlinear model are investigated. Next, a theorem on the existence of an optimal solution for linear model with variable coefficients is proved.

Distributed optimization via active disturbance rejection control: A nabla fractional design

Yikun Zeng, Yiheng Wei, Shuaiyu Zhou, Dongdong Yue (2024)

Kybernetika

Similarity:

This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal...

Robust fractional adaptive control based on the strictly Positive Realness Condition

Samir Ladaci, Abdelfatah Charef, Jean Jacques Loiseau (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents a new approach to robust adaptive control, using fractional order systems as parallel feedforward in the adaptation loop. The problem is that adaptive control systems may diverge when confronted with finite sensor and actuator dynamics, or with parasitic disturbances. One of the classical robust adaptive control solutions to these problems makes use of parallel feedforward and simplified adaptive controllers based on the concept of positive realness. The proposed...

Hamilton’s Principle with Variable Order Fractional Derivatives

Atanackovic, Teodor, Pilipovic, Stevan (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo We propose a generalization of Hamilton’s principle in which the minimization is performed with respect to the admissible functions and the order of the derivation. The Euler–Lagrange equations for such minimization are derived. They generalize the classical Euler-Lagrange equation. Also, a new variational problem is formulated in the case when the order of the derivative is defined...

Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch, Toufik Mekkaoui (2014)

Nonautonomous Dynamical Systems

Similarity:

In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.