A fast numerical test of multivariate polynomial positiveness with applications

Petr Augusta; Petra Augustová

Kybernetika (2018)

  • Volume: 54, Issue: 2, page 289-303
  • ISSN: 0023-5954

Abstract

top
The paper presents a simple method to check a positiveness of symmetric multivariate polynomials on the unit multi-circle. The method is based on the sampling polynomials using the fast Fourier transform. The algorithm is described and its possible applications are proposed. One of the aims of the paper is to show that presented algorithm is significantly faster than commonly used method based on the semi-definite programming expression.

How to cite

top

Augusta, Petr, and Augustová, Petra. "A fast numerical test of multivariate polynomial positiveness with applications." Kybernetika 54.2 (2018): 289-303. <http://eudml.org/doc/294612>.

@article{Augusta2018,
abstract = {The paper presents a simple method to check a positiveness of symmetric multivariate polynomials on the unit multi-circle. The method is based on the sampling polynomials using the fast Fourier transform. The algorithm is described and its possible applications are proposed. One of the aims of the paper is to show that presented algorithm is significantly faster than commonly used method based on the semi-definite programming expression.},
author = {Augusta, Petr, Augustová, Petra},
journal = {Kybernetika},
keywords = {multidimensional systems; positive polynomials; fast Fourier transforms; stability; numerical algorithm},
language = {eng},
number = {2},
pages = {289-303},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A fast numerical test of multivariate polynomial positiveness with applications},
url = {http://eudml.org/doc/294612},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Augusta, Petr
AU - Augustová, Petra
TI - A fast numerical test of multivariate polynomial positiveness with applications
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 2
SP - 289
EP - 303
AB - The paper presents a simple method to check a positiveness of symmetric multivariate polynomials on the unit multi-circle. The method is based on the sampling polynomials using the fast Fourier transform. The algorithm is described and its possible applications are proposed. One of the aims of the paper is to show that presented algorithm is significantly faster than commonly used method based on the semi-definite programming expression.
LA - eng
KW - multidimensional systems; positive polynomials; fast Fourier transforms; stability; numerical algorithm
UR - http://eudml.org/doc/294612
ER -

References

top
  1. Ali, A., Ali, M., 10.1007/s11045-016-0462-8, Multidimensional Systems Signal Process. 28 (2016), 1-11. MR3745050DOI10.1007/s11045-016-0462-8
  2. Augusta, P., 10.1109/med.2013.6608850, In: Proc. 21st Mediterranean Conference on Control and Automation, 2013, pp. 1050-1054. DOI10.1109/med.2013.6608850
  3. Augusta, P., A simple method for stabilisation of (2+1)D systems., In: Proc. 8th International Workshop on Multidimensional Systems, 2013, pp. 163-167. 
  4. Augusta, P., Augustová, P., 10.1016/j.jfranklin.2013.05.021, J. Franklin Inst. 350 (2013), 2949-2966. MR3123399DOI10.1016/j.jfranklin.2013.05.021
  5. Augusta, P., Cichy, B., Galkowski, K., Rogers, E., 10.1109/nds.2015.7332655, In: Proc. IEEE 9th International Workshop on Multidimensional Systems, 2015, pp. 134-139. DOI10.1109/nds.2015.7332655
  6. Augusta, P., Cichy, B., Galkowski, K., Rogers, E., 10.1109/mmar.2016.7575281, In: Proc. 21st International Conference on Methods and Models in Automation and Robotics, 2016. DOI10.1109/mmar.2016.7575281
  7. Augusta, P., Hurák, Z., 10.1007/s11045-011-0152-5, Multidimensional Systems Signal Process. 24 (2013), 3-21. MR3016749DOI10.1007/s11045-011-0152-5
  8. Bose, N. K., 10.1007/978-94-009-5225-6, D. Riedel Publishing Company, 1985. MR0804981DOI10.1007/978-94-009-5225-6
  9. Bose, N. K., Multidimensional Systems Theory and Applications. Second edition., Kluwer Academic Publishers, 2003. MR2039820
  10. Cichy, B., Gałkowski, K., Rogers, E., Iterative learning control for spatio-temporal dynamics using Crank-Nicolson discretization, Multidimensional Systems Signal Process. 23 (2012), 185-208. MR2875114
  11. Cichy, B., Gałkowski, K., Rogers, E., Kummert, A., 10.1007/s11045-010-0108-1, Multidimensional Systems Signal Process. 22 (2011), 83-96. MR2771473DOI10.1007/s11045-010-0108-1
  12. Cichy, B., Hladowski, L., Gałkowski, K., Rauh, A., Aschemann, H., 10.1109/tcst.2015.2394236, IEEE Trans. Control Systems Technol. 23 (2015), 2035-2043. DOI10.1109/tcst.2015.2394236
  13. Cooley, J. W., Tukey, J. W., 10.2307/2003354, Mathematics of Computation 19 (1965), 297-301. MR0178586DOI10.2307/2003354
  14. Dumitrescu, B., 10.1109/nds.2005.195358, In: Proc. Fourth International Workshop on Multidimensional Systems, 2005, pp. 223-228. DOI10.1109/nds.2005.195358
  15. Dumitrescu, B., 10.1109/tcsi.2005.859624, IEEE Trans. Circuts Systems 53 (2006), 928-936. MR2235849DOI10.1109/tcsi.2005.859624
  16. Dumitrescu, B., Positive Trigonometric Polynomials and Signal Processing Applications., Springer, 2007. MR2309555
  17. Dumitrescu, B., 10.1109/tcsii.2006.890409, IEEE Trans. Circuits Systems 54 (2007), 353-356. DOI10.1109/tcsii.2006.890409
  18. Dumitrescu, B., Şicleru, B. C., Ştefan, R., 10.1109/icassp.2009.4960300, In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, pp. 3181-3184. DOI10.1109/icassp.2009.4960300
  19. Henrion, D., Garulli, A., Positive Polynomials in Control 
  20. Kaczorek, T., 10.1007/978-1-4471-0221-2, Springer, London 2002. DOI10.1007/978-1-4471-0221-2
  21. Kaczorek, T., Selected Problems of Fractional Systems Theory., Springer, Berlin 2011. Zbl1221.93002MR2798773
  22. Löfberg, J., 10.1109/cacsd.2004.1393890, In: Proc. CACSD Conference, 2004. DOI10.1109/cacsd.2004.1393890
  23. MATLAB, version 9.2.0.538062 (R2017a)., MathWorks, Natick 2017. 
  24. Paszke, W., Analysis and Synthesis of Multidimensional System Classes Using Linear Matrix Inequality Methods., University of Zielona Góra Press, Zielona Góra 2005. MR2796590
  25. Rabenstein, R., Steffen, P., 10.1007/s11045-010-0115-2, Multidimensional Systems Signal Process. 23 (2012), 163-183. MR2875113DOI10.1007/s11045-010-0115-2
  26. Ramos, J., Mercère, G., 10.1080/00207179.2016.1172258, Int. J. Control 89 (2016), 2584-2610. MR3576751DOI10.1080/00207179.2016.1172258
  27. Rogers, E., Gałkowski, K., Owens, D. H., Control Systems Theory and Applications for Linear Repetitive Processes., Springer, 2007. MR2313304
  28. Rogers, E., Gałkowski, K., Paszke, W., Moore, K. L., Bauer, P. H., Hladowski, L., Dabkowski, P., 10.1007/s11045-015-0341-8, Multidimensional Systems Signal Process. 26 (2015), 895-939. MR3401856DOI10.1007/s11045-015-0341-8
  29. Strintzis, M. G., 10.1109/tcs.1977.1084368, IEEE Trans. Automat. Control 24 (1977), 432-437. MR0497276DOI10.1109/tcs.1977.1084368
  30. Sturm, J. F., 10.1080/10556789908805766, Optimiz. Methods Software 11 (1999), 625-653. MR1778433DOI10.1080/10556789908805766
  31. Sulikowski, B., Galkowski, K., Kummert, A., 10.1007/s11045-013-0256-1, Multidimensional Systems Signal Process. 26 (2015), 267-290. MR3300512DOI10.1007/s11045-013-0256-1
  32. Sulikowski, B., Galkowski, K., Kummert, A., 10.1109/nds.2015.7332654, In: Proc. IEEE 9th International Workshop on Multidimensional Systems, 2015. MR3300512DOI10.1109/nds.2015.7332654
  33. Zhang, F., 10.1007/b105056, Springer, 2005. MR2160825DOI10.1007/b105056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.