Sliding-mode pinning control of complex networks

Oscar J. Suarez; Carlos J. Vega; Santiago Elvira-Ceja; Edgar N. Sanchez; David I. Rodriguez

Kybernetika (2018)

  • Volume: 54, Issue: 5, page 1011-1032
  • ISSN: 0023-5954

Abstract

top
In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.

How to cite

top

Suarez, Oscar J., et al. "Sliding-mode pinning control of complex networks." Kybernetika 54.5 (2018): 1011-1032. <http://eudml.org/doc/294626>.

@article{Suarez2018,
abstract = {In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.},
author = {Suarez, Oscar J., Vega, Carlos J., Elvira-Ceja, Santiago, Sanchez, Edgar N., Rodriguez, David I.},
journal = {Kybernetika},
keywords = {complex network; pinning control; sliding mode; backstepping; trajectory tracking},
language = {eng},
number = {5},
pages = {1011-1032},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Sliding-mode pinning control of complex networks},
url = {http://eudml.org/doc/294626},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Suarez, Oscar J.
AU - Vega, Carlos J.
AU - Elvira-Ceja, Santiago
AU - Sanchez, Edgar N.
AU - Rodriguez, David I.
TI - Sliding-mode pinning control of complex networks
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 1011
EP - 1032
AB - In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.
LA - eng
KW - complex network; pinning control; sliding mode; backstepping; trajectory tracking
UR - http://eudml.org/doc/294626
ER -

References

top
  1. Barabási, A. L., Albert, R., 10.1126/science.286.5439.509, Science 286 (1999), 5439, 509-512. Zbl1226.05223MR2091634DOI10.1126/science.286.5439.509
  2. Bhat, S. P., Bernstein, D. U., 10.1137/s0363012997321358, SIAM J. Control Optim. 38 (2000), 3, 751-766. Zbl0945.34039MR1756893DOI10.1137/s0363012997321358
  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D. U., 10.1016/j.physrep.2005.10.009, Phys. Rep. 424 (2006), 4, 175-308. MR2193621DOI10.1016/j.physrep.2005.10.009
  4. Chen, G., Ueta, T., 10.1142/S0218127499001024, Int. J. Bifurcation Chaos 9 (1999), 7, 1465-1466. Zbl0962.37013MR1729683DOI10.1142/S0218127499001024
  5. Chen, G., Wang, X., Li, X., Fundamentals of Complex Networks: Models, Structures and Dynamics., John Wiley and Sons, Singapore 2014. 
  6. Chen, T., Liu, X., Lu, W., 10.1109/TCSI.2007.895383, IEEE Trans. Circuits Systems I: Regular Papers 54 (2007), 6, 1317-1326 MR2370589DOI10.1109/TCSI.2007.895383
  7. Drakunov, S., Izosimov, D., Lukyanov, A., Utkin, V. A., Utkin, V. I., The block control principle. 1., Automat. Remote Control 51 (1990), 5, 601-608. MR1071018
  8. Emelyanov, S. V., Variable Structure Control Systems., Nouka, Moscow 1967. MR0243850
  9. Erdos, P., Rényi, A., On the evolution of random graphs., Inst. Math. Hungar. Acad. Sci. 5 (1960), 1, 17-60. MR0125031
  10. Hu, G., Qu, Z., 10.1103/physrevlett.72.68, Phys. Rev. Lett. 72 (1994), 1, 68. DOI10.1103/physrevlett.72.68
  11. Guldner, J., Utkin, V. I., 10.1080/00207179608921850, Int. J. Control 63 (1996), 3, 417-432. MR1650715DOI10.1080/00207179608921850
  12. Guldner, J., Utkin, V. I., The chattering problem in sliding mode systems., In: 14th Intenational Symposium of Mathematical Theory of Networks and Systems, (MTNS), Perpignan 2000. 
  13. Khalil, H. K., Noninear Systems., Prentice-Hall, New Jersey 2002. 
  14. Khanzadeh, A., Pourgholi, M., 10.1007/s11071-017-3400-x, Nonlinear Dynamics 88 (2017), 4, 2637-2649. MR3656544DOI10.1007/s11071-017-3400-x
  15. Krstic, M., Kanellakopoulos, I., Kokotovic, P. V., Nonlinear and Adaptive Control Design., Wiley, 1995. 
  16. Lee, H., Utkin, V. I., 10.1016/j.arcontrol.2007.08.001, Ann. Rev. Control 31 (2007), 2, 179-188. DOI10.1016/j.arcontrol.2007.08.001
  17. Li, X., Chen, G., 10.1109/tcsi.2003.818611, IEEE Trans. Circuits and Systems I: Fundamental Theory Appl. 50 (2003), 11, 1381-1390. MR2024565DOI10.1109/tcsi.2003.818611
  18. Li, X., Wang, X., Chen, G., 10.1109/tcsi.2004.835655, IEEE Trans. Circuits Systems I: Regular Papers 51 (2004), 10, 2074-2087. MR2096915DOI10.1109/tcsi.2004.835655
  19. Lorenz, E., 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2, J. Atmospher. Sci. 20 (1963), 2, 130-141. DOI10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
  20. Pourmahmood, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.apm.2010.12.020, Appl. Math. Modell. 35 (2011), 3080-3091. MR2776263DOI10.1016/j.apm.2010.12.020
  21. Roy, R., Murphy, T., Maier, T., Gills, Z., Hunt, E., 10.1103/physrevlett.68.1259, Phys. Rev. Lett. 68 (1992), 9, 1259-1262. DOI10.1103/physrevlett.68.1259
  22. Sanchez, E. N., Rodriguez, D. I., 10.1142/s0218127415500315, Int. Bifurcation Chaos 25, (2015), 02, 1550031. MR3316325DOI10.1142/s0218127415500315
  23. Sira-Ramírez, H., 10.1007/978-3-319-17257-6, Birkhauser, Basel 2015. MR3362896DOI10.1007/978-3-319-17257-6
  24. Sun, J., Shen, Y., Wang, X., Chen, J., 10.1007/s11071-013-1133-z, Nonlinear Dynamics 76 (2014), 1, 383-397. MR3189178DOI10.1007/s11071-013-1133-z
  25. Su, H., Xiaofan, W., Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning., Springer-Verlag, Berlin 2013. MR3014429
  26. Utkin, V. I., Lee, H., 10.1109/vss.2006.1644542, In: Variable Structure Systems. VSS'06. International Workshop on Variable Structure Systems, (2006), pp. 346-350. DOI10.1109/vss.2006.1644542
  27. Utkin, V. I., Sliding Modes and their Application in Variable Structure Systems., Mir Publishers, Moscow 1978. MR0479534
  28. Utkin, V. I., Sliding Modes in Control and Optimization., Springer-Verlag, Berlin 2013. Zbl0748.93044MR1295845
  29. Watts, D., Duncan, J., Strogatz, S., 10.1038/30918, Nature 393 (1998), 6684, 440-442. MR1716136DOI10.1038/30918
  30. Wang, X., Cheng, G., 10.1016/s0378-4371(02)00772-0, Physica A: Statist. Mech. Appl. 310 (2002), 3, 521-531. MR1946327DOI10.1016/s0378-4371(02)00772-0
  31. Vaidyanathan, S., Sampath, S., 10.1007/978-3-642-24055-3_16, In: Advances in Digital Image Processing and Information Technology, Springer 2011, pp. 156-164. DOI10.1007/978-3-642-24055-3_16
  32. Yau, H., 10.1016/j.chaos.2004.02.004, Chaos, Solitons Fractals 22 (2004), 341-347. MR2060871DOI10.1016/j.chaos.2004.02.004
  33. Yu, W., Chen, G., Lü, J., 10.1016/j.automatica.2008.07.016, Automatica 45 (2009), 2, 429-435. Zbl1158.93308MR2527339DOI10.1016/j.automatica.2008.07.016
  34. Zhang, M., Xu, M., Han, M., 10.1109/iccss.2017.8091448, Inform. Cybernet. Comput. Social Systems (ICCSS), (2017), 406-411. DOI10.1109/iccss.2017.8091448

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.