Sliding-mode pinning control of complex networks
Oscar J. Suarez; Carlos J. Vega; Santiago Elvira-Ceja; Edgar N. Sanchez; David I. Rodriguez
Kybernetika (2018)
- Volume: 54, Issue: 5, page 1011-1032
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSuarez, Oscar J., et al. "Sliding-mode pinning control of complex networks." Kybernetika 54.5 (2018): 1011-1032. <http://eudml.org/doc/294626>.
@article{Suarez2018,
abstract = {In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.},
author = {Suarez, Oscar J., Vega, Carlos J., Elvira-Ceja, Santiago, Sanchez, Edgar N., Rodriguez, David I.},
journal = {Kybernetika},
keywords = {complex network; pinning control; sliding mode; backstepping; trajectory tracking},
language = {eng},
number = {5},
pages = {1011-1032},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Sliding-mode pinning control of complex networks},
url = {http://eudml.org/doc/294626},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Suarez, Oscar J.
AU - Vega, Carlos J.
AU - Elvira-Ceja, Santiago
AU - Sanchez, Edgar N.
AU - Rodriguez, David I.
TI - Sliding-mode pinning control of complex networks
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 1011
EP - 1032
AB - In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.
LA - eng
KW - complex network; pinning control; sliding mode; backstepping; trajectory tracking
UR - http://eudml.org/doc/294626
ER -
References
top- Barabási, A. L., Albert, R., 10.1126/science.286.5439.509, Science 286 (1999), 5439, 509-512. Zbl1226.05223MR2091634DOI10.1126/science.286.5439.509
- Bhat, S. P., Bernstein, D. U., 10.1137/s0363012997321358, SIAM J. Control Optim. 38 (2000), 3, 751-766. Zbl0945.34039MR1756893DOI10.1137/s0363012997321358
- Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D. U., 10.1016/j.physrep.2005.10.009, Phys. Rep. 424 (2006), 4, 175-308. MR2193621DOI10.1016/j.physrep.2005.10.009
- Chen, G., Ueta, T., 10.1142/S0218127499001024, Int. J. Bifurcation Chaos 9 (1999), 7, 1465-1466. Zbl0962.37013MR1729683DOI10.1142/S0218127499001024
- Chen, G., Wang, X., Li, X., Fundamentals of Complex Networks: Models, Structures and Dynamics., John Wiley and Sons, Singapore 2014.
- Chen, T., Liu, X., Lu, W., 10.1109/TCSI.2007.895383, IEEE Trans. Circuits Systems I: Regular Papers 54 (2007), 6, 1317-1326 MR2370589DOI10.1109/TCSI.2007.895383
- Drakunov, S., Izosimov, D., Lukyanov, A., Utkin, V. A., Utkin, V. I., The block control principle. 1., Automat. Remote Control 51 (1990), 5, 601-608. MR1071018
- Emelyanov, S. V., Variable Structure Control Systems., Nouka, Moscow 1967. MR0243850
- Erdos, P., Rényi, A., On the evolution of random graphs., Inst. Math. Hungar. Acad. Sci. 5 (1960), 1, 17-60. MR0125031
- Hu, G., Qu, Z., 10.1103/physrevlett.72.68, Phys. Rev. Lett. 72 (1994), 1, 68. DOI10.1103/physrevlett.72.68
- Guldner, J., Utkin, V. I., 10.1080/00207179608921850, Int. J. Control 63 (1996), 3, 417-432. MR1650715DOI10.1080/00207179608921850
- Guldner, J., Utkin, V. I., The chattering problem in sliding mode systems., In: 14th Intenational Symposium of Mathematical Theory of Networks and Systems, (MTNS), Perpignan 2000.
- Khalil, H. K., Noninear Systems., Prentice-Hall, New Jersey 2002.
- Khanzadeh, A., Pourgholi, M., 10.1007/s11071-017-3400-x, Nonlinear Dynamics 88 (2017), 4, 2637-2649. MR3656544DOI10.1007/s11071-017-3400-x
- Krstic, M., Kanellakopoulos, I., Kokotovic, P. V., Nonlinear and Adaptive Control Design., Wiley, 1995.
- Lee, H., Utkin, V. I., 10.1016/j.arcontrol.2007.08.001, Ann. Rev. Control 31 (2007), 2, 179-188. DOI10.1016/j.arcontrol.2007.08.001
- Li, X., Chen, G., 10.1109/tcsi.2003.818611, IEEE Trans. Circuits and Systems I: Fundamental Theory Appl. 50 (2003), 11, 1381-1390. MR2024565DOI10.1109/tcsi.2003.818611
- Li, X., Wang, X., Chen, G., 10.1109/tcsi.2004.835655, IEEE Trans. Circuits Systems I: Regular Papers 51 (2004), 10, 2074-2087. MR2096915DOI10.1109/tcsi.2004.835655
- Lorenz, E., 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2, J. Atmospher. Sci. 20 (1963), 2, 130-141. DOI10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
- Pourmahmood, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.apm.2010.12.020, Appl. Math. Modell. 35 (2011), 3080-3091. MR2776263DOI10.1016/j.apm.2010.12.020
- Roy, R., Murphy, T., Maier, T., Gills, Z., Hunt, E., 10.1103/physrevlett.68.1259, Phys. Rev. Lett. 68 (1992), 9, 1259-1262. DOI10.1103/physrevlett.68.1259
- Sanchez, E. N., Rodriguez, D. I., 10.1142/s0218127415500315, Int. Bifurcation Chaos 25, (2015), 02, 1550031. MR3316325DOI10.1142/s0218127415500315
- Sira-Ramírez, H., 10.1007/978-3-319-17257-6, Birkhauser, Basel 2015. MR3362896DOI10.1007/978-3-319-17257-6
- Sun, J., Shen, Y., Wang, X., Chen, J., 10.1007/s11071-013-1133-z, Nonlinear Dynamics 76 (2014), 1, 383-397. MR3189178DOI10.1007/s11071-013-1133-z
- Su, H., Xiaofan, W., Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning., Springer-Verlag, Berlin 2013. MR3014429
- Utkin, V. I., Lee, H., 10.1109/vss.2006.1644542, In: Variable Structure Systems. VSS'06. International Workshop on Variable Structure Systems, (2006), pp. 346-350. DOI10.1109/vss.2006.1644542
- Utkin, V. I., Sliding Modes and their Application in Variable Structure Systems., Mir Publishers, Moscow 1978. MR0479534
- Utkin, V. I., Sliding Modes in Control and Optimization., Springer-Verlag, Berlin 2013. Zbl0748.93044MR1295845
- Watts, D., Duncan, J., Strogatz, S., 10.1038/30918, Nature 393 (1998), 6684, 440-442. MR1716136DOI10.1038/30918
- Wang, X., Cheng, G., 10.1016/s0378-4371(02)00772-0, Physica A: Statist. Mech. Appl. 310 (2002), 3, 521-531. MR1946327DOI10.1016/s0378-4371(02)00772-0
- Vaidyanathan, S., Sampath, S., 10.1007/978-3-642-24055-3_16, In: Advances in Digital Image Processing and Information Technology, Springer 2011, pp. 156-164. DOI10.1007/978-3-642-24055-3_16
- Yau, H., 10.1016/j.chaos.2004.02.004, Chaos, Solitons Fractals 22 (2004), 341-347. MR2060871DOI10.1016/j.chaos.2004.02.004
- Yu, W., Chen, G., Lü, J., 10.1016/j.automatica.2008.07.016, Automatica 45 (2009), 2, 429-435. Zbl1158.93308MR2527339DOI10.1016/j.automatica.2008.07.016
- Zhang, M., Xu, M., Han, M., 10.1109/iccss.2017.8091448, Inform. Cybernet. Comput. Social Systems (ICCSS), (2017), 406-411. DOI10.1109/iccss.2017.8091448
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.