Soft variable structure control in time-delay systems with saturating input
Kybernetika (2021)
- Issue: 2, page 236-255
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topIgnaciuk, Przemysław. "Soft variable structure control in time-delay systems with saturating input." Kybernetika (2021): 236-255. <http://eudml.org/doc/298081>.
@article{Ignaciuk2021,
abstract = {In order to achieve a short regulation cycle, time-optimal control has been considered in the past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the practical systems, have incited other research directions to meet this objective. In this paper, soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay systems with input constraint. The desired fast convergence under a smoothly varying control signal is obtained. The stability issues originating from the non-negligible delay are addressed explicitly by incorporating a dead-time compensator, applicable to both structurally stable and unstable plants. The properties of the obtained dynamic soft VSC system are demonstrated analytically and compared with the linear and saturating control structures.},
author = {Ignaciuk, Przemysław},
journal = {Kybernetika},
keywords = {soft Variable Structure Control; nonlinear control; time-delay systems; delay compensation},
language = {eng},
number = {2},
pages = {236-255},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Soft variable structure control in time-delay systems with saturating input},
url = {http://eudml.org/doc/298081},
year = {2021},
}
TY - JOUR
AU - Ignaciuk, Przemysław
TI - Soft variable structure control in time-delay systems with saturating input
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 236
EP - 255
AB - In order to achieve a short regulation cycle, time-optimal control has been considered in the past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the practical systems, have incited other research directions to meet this objective. In this paper, soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay systems with input constraint. The desired fast convergence under a smoothly varying control signal is obtained. The stability issues originating from the non-negligible delay are addressed explicitly by incorporating a dead-time compensator, applicable to both structurally stable and unstable plants. The properties of the obtained dynamic soft VSC system are demonstrated analytically and compared with the linear and saturating control structures.
LA - eng
KW - soft Variable Structure Control; nonlinear control; time-delay systems; delay compensation
UR - http://eudml.org/doc/298081
ER -
References
top- Abbasi, W., Rehman, F. ur, Shah, I., , Kybernetika 54 (2018), 476-495. MR3844828DOI
- Adamy, J., Flemming, A., , Automatica 40 (2004), 1821-1844. MR2155993DOI
- Agrachev, A. A., Biolo, C., , J. Dyn. Control Syst. 23 (2017), 577-595. MR3657278DOI
- Asadinia, M. S., Binazadeh, T., Robust soft variable structure control of perturbed singular systems with constrained input., Control Cybernet. 46 (2017), 345-360. MR3839925
- Chukwu, E. N., Stability and Time-Optimal Control of Hereditary Systems., Academic Press, Inc., San Diego 2001. MR1162308
- Cucuzzella, M., Ferrara, A., 10.1016/j.automatica.2017.11.034, Automatica 89 (2018), 235-240. MR3762051DOI10.1016/j.automatica.2017.11.034
- Gutman, P.-O., Hagander, P., , IEEE Trans. Automat. Control AC-30 (1985), 22-33. MR0777074DOI
- Hu, J.-B., Wei, H., Feng, Y.-F., Yang, X.-B., , Kybernetika 55 (2019), 203-215. MR3935422DOI
- Idrees, M., Muhammad, S., Ullah, S., , Kybernetika 55 (2019), 455-471. MR4015993DOI
- Ignaciuk, P., , J. Proc. Control 22 (2012), 915-924. DOI
- Ignaciuk, P., , IEEE Tran. Ind. Inform. 10 (2014), 559-568. DOI
- Ignaciuk, P., Bartoszewicz, A., , Kybernetika 44 (2008), 336-359. MR2436036DOI
- Ignaciuk, P., Karbowańczyk, M., Active queue management with discrete sliding modes in TCP networks., Bull. Pol. Acad. Sci.-Te. 62 (2014), 701-711.
- Ignaciuk, P., Morawski, M., , IEEE Trans. Control Syst. Techn. 27 (2019), 1244-1249. DOI
- Ignaciuk, P., Wieczorek, Ł., , Math. Probl. Eng. 2019 (2019), 1-14. MR4032830DOI
- Jasniewicz, B., Adamy, J., Fast robust control of linear systems subject to actuator saturation., In: Proc. IFAC World Congr., Seoul 2008, pp- 15179-15184.
- Kamal, S., Bandyopadhyay, B., , Asian J. Control 17 (2015), 1342-1346. MR3373093DOI
- Kankashvar, M. R., Hashemzadeh, F., Baradarannia, M., Ghiasi, A. R., State feedback time-optimal controller for linear systems with input delay., In: 2nd Int. Conf. Know. Eng. Innovat., Teheran 2015, pp. 582-588.
- Kefferpütz, K., Fischer, B., Adamy, J., , IEEE Trans. Automat. Control 58 (2013), 2693-2697. MR3106081DOI
- Krstic, M., Bekiaris-Liberis, N., , Ann. Rev. Control 34 (2010). 233-244. DOI
- Lee, H., Utkin, V. I., , Ann. Rev. Control 31 (2007), 179-188. MR2455618DOI
- Lens, H., Adamy, J., Domont-Yankulova, D., , Automatica 47 (2011), 857-860. MR2878350DOI
- Liu, Y., Gao, C., Meng, B., Cong, X., Dynamic soft variable structure control for singular systems., In: Proc. 30th Chinese Control Conf., Yantai 2011, pp. 2572-2577.
- Liu, S., Jiang, Y., Liu, P., Rejection of nonharmonic disturbances in nonlinear systems., Kybernetika 46 (2010), 785-798. MR2778927
- Liu, Y., Kao, Y., Gu, S., Karimi, H. R., , J. Franklin Inst. 352 (2015), 1613-1626. MR3325508DOI
- Liu, J., Wang, X., Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and MATLAB Simulation., Springer-Verlag, Berlin - Heidelberg 2012.
- McEneaney, W. M., Pandey, A., , Kybernetika 52 (2016), 666-695. MR3602010DOI
- Mondié, S., Michiels, W., , IEEE Trans. Automat. Control 48 (2003), 2207-2212. MR2027246DOI
- Morawski, M., Ignaciuk, P., , Control Eng. Prac. 55 (2016), 127-138. DOI
- Morawski, M., Ignaciuk, P., , Comput. Commun. 132 (2018), 56-64. DOI
- Naim, M. M., Spiegler, V. I., Wikner, J., Towill, D. R., 10.1016/j.ejor.2017.05.014, Eur. J. Oper. Res. 263 (2017), 240-246. DOI10.1016/j.ejor.2017.05.014
- Neusser, Z., Valasek, M., Control of the underactuated mechanical systems using natural motion., Kybernetika 48 (2012), 223-241. MR2954322
- Normey-Rico, J. E., Camacho, E. F., , Control Eng. Prac. 16 (2008), 407-428. DOI
- Peng, Ch., Yue, D., Han, Q.-L., Communication and Control for Networked Complex Systems., Springer-Verlag, Berlin - Heidelberg 2015. MR3328677
- Petre, E., Tebbani, S., Selisteanu, D., , Asian J. Control. 17 (2015), 1767-1778. MR3397752DOI
- Richard, J., Gouaisbaut, F., Perruquetti, W., Sliding mode control in the presence of delay., Kybernetika 37 (2001), 277-294. MR1859086
- Slotine, J.-J., Li, W., Applied Nonlinear Control., Prentice Hall, Englewood Cliffs 1991. Zbl0753.93036
- Suarez, O. J., Vega, C. J., Elvira-Ceja, S., Sanchez, E. N., Rodriguez, D. I., , Kybernetika 54 (2018), 1011-1032. MR3893133DOI
- Sun, P., Zhang, L., Zhang, K., , Kybernetika 54 (2018), 1091-1104. MR3893137DOI
- Utkin, V. I., , IEEE Trans. Autom. Control 22 (1977), 212-222. MR0484664DOI
- Xu, R., Liu, Y., Gao, C., Wang, S., Soft variable structure control with differential equation for generalized systems., In: Proc. 26th Chinese Control Dec. Conf., Changsha 2014, pp. 530-535. MR2228135
- Yang, X., Yan, J., Hua, Ch., Guan, X., , Int. J. Robust Nonlin. 30 (2020), 121-141. MR4049003DOI
- Yang, K.-Y., Zhang, L.-L., Zhang, J., Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control., Kybernetika 51 (2015), 1084-1100. MR3453687
- Zhang, D., Shen, Y., Xia, X., , Kybernetika 52 (2016), 441-460. MR3532516DOI
- Zhong, Q.-Ch., Robust Control of Time-Delay Systems., Springer-Verlag, London 2006. MR1761689
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.