Soft variable structure control in time-delay systems with saturating input

Przemysław Ignaciuk

Kybernetika (2021)

  • Issue: 2, page 236-255
  • ISSN: 0023-5954

Abstract

top
In order to achieve a short regulation cycle, time-optimal control has been considered in the past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the practical systems, have incited other research directions to meet this objective. In this paper, soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay systems with input constraint. The desired fast convergence under a smoothly varying control signal is obtained. The stability issues originating from the non-negligible delay are addressed explicitly by incorporating a dead-time compensator, applicable to both structurally stable and unstable plants. The properties of the obtained dynamic soft VSC system are demonstrated analytically and compared with the linear and saturating control structures.

How to cite

top

Ignaciuk, Przemysław. "Soft variable structure control in time-delay systems with saturating input." Kybernetika (2021): 236-255. <http://eudml.org/doc/298081>.

@article{Ignaciuk2021,
abstract = {In order to achieve a short regulation cycle, time-optimal control has been considered in the past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the practical systems, have incited other research directions to meet this objective. In this paper, soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay systems with input constraint. The desired fast convergence under a smoothly varying control signal is obtained. The stability issues originating from the non-negligible delay are addressed explicitly by incorporating a dead-time compensator, applicable to both structurally stable and unstable plants. The properties of the obtained dynamic soft VSC system are demonstrated analytically and compared with the linear and saturating control structures.},
author = {Ignaciuk, Przemysław},
journal = {Kybernetika},
keywords = {soft Variable Structure Control; nonlinear control; time-delay systems; delay compensation},
language = {eng},
number = {2},
pages = {236-255},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Soft variable structure control in time-delay systems with saturating input},
url = {http://eudml.org/doc/298081},
year = {2021},
}

TY - JOUR
AU - Ignaciuk, Przemysław
TI - Soft variable structure control in time-delay systems with saturating input
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 236
EP - 255
AB - In order to achieve a short regulation cycle, time-optimal control has been considered in the past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the practical systems, have incited other research directions to meet this objective. In this paper, soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay systems with input constraint. The desired fast convergence under a smoothly varying control signal is obtained. The stability issues originating from the non-negligible delay are addressed explicitly by incorporating a dead-time compensator, applicable to both structurally stable and unstable plants. The properties of the obtained dynamic soft VSC system are demonstrated analytically and compared with the linear and saturating control structures.
LA - eng
KW - soft Variable Structure Control; nonlinear control; time-delay systems; delay compensation
UR - http://eudml.org/doc/298081
ER -

References

top
  1. Abbasi, W., Rehman, F. ur, Shah, I., , Kybernetika 54 (2018), 476-495. MR3844828DOI
  2. Adamy, J., Flemming, A., , Automatica 40 (2004), 1821-1844. MR2155993DOI
  3. Agrachev, A. A., Biolo, C., , J. Dyn. Control Syst. 23 (2017), 577-595. MR3657278DOI
  4. Asadinia, M. S., Binazadeh, T., Robust soft variable structure control of perturbed singular systems with constrained input., Control Cybernet. 46 (2017), 345-360. MR3839925
  5. Chukwu, E. N., Stability and Time-Optimal Control of Hereditary Systems., Academic Press, Inc., San Diego 2001. MR1162308
  6. Cucuzzella, M., Ferrara, A., 10.1016/j.automatica.2017.11.034, Automatica 89 (2018), 235-240. MR3762051DOI10.1016/j.automatica.2017.11.034
  7. Gutman, P.-O., Hagander, P., , IEEE Trans. Automat. Control AC-30 (1985), 22-33. MR0777074DOI
  8. Hu, J.-B., Wei, H., Feng, Y.-F., Yang, X.-B., , Kybernetika 55 (2019), 203-215. MR3935422DOI
  9. Idrees, M., Muhammad, S., Ullah, S., , Kybernetika 55 (2019), 455-471. MR4015993DOI
  10. Ignaciuk, P., , J. Proc. Control 22 (2012), 915-924. DOI
  11. Ignaciuk, P., , IEEE Tran. Ind. Inform. 10 (2014), 559-568. DOI
  12. Ignaciuk, P., Bartoszewicz, A., , Kybernetika 44 (2008), 336-359. MR2436036DOI
  13. Ignaciuk, P., Karbowańczyk, M., Active queue management with discrete sliding modes in TCP networks., Bull. Pol. Acad. Sci.-Te. 62 (2014), 701-711. 
  14. Ignaciuk, P., Morawski, M., , IEEE Trans. Control Syst. Techn. 27 (2019), 1244-1249. DOI
  15. Ignaciuk, P., Wieczorek, Ł., , Math. Probl. Eng. 2019 (2019), 1-14. MR4032830DOI
  16. Jasniewicz, B., Adamy, J., Fast robust control of linear systems subject to actuator saturation., In: Proc. IFAC World Congr., Seoul 2008, pp- 15179-15184. 
  17. Kamal, S., Bandyopadhyay, B., , Asian J. Control 17 (2015), 1342-1346. MR3373093DOI
  18. Kankashvar, M. R., Hashemzadeh, F., Baradarannia, M., Ghiasi, A. R., State feedback time-optimal controller for linear systems with input delay., In: 2nd Int. Conf. Know. Eng. Innovat., Teheran 2015, pp. 582-588. 
  19. Kefferpütz, K., Fischer, B., Adamy, J., , IEEE Trans. Automat. Control 58 (2013), 2693-2697. MR3106081DOI
  20. Krstic, M., Bekiaris-Liberis, N., , Ann. Rev. Control 34 (2010). 233-244. DOI
  21. Lee, H., Utkin, V. I., , Ann. Rev. Control 31 (2007), 179-188. MR2455618DOI
  22. Lens, H., Adamy, J., Domont-Yankulova, D., , Automatica 47 (2011), 857-860. MR2878350DOI
  23. Liu, Y., Gao, C., Meng, B., Cong, X., Dynamic soft variable structure control for singular systems., In: Proc. 30th Chinese Control Conf., Yantai 2011, pp. 2572-2577. 
  24. Liu, S., Jiang, Y., Liu, P., Rejection of nonharmonic disturbances in nonlinear systems., Kybernetika 46 (2010), 785-798. MR2778927
  25. Liu, Y., Kao, Y., Gu, S., Karimi, H. R., , J. Franklin Inst. 352 (2015), 1613-1626. MR3325508DOI
  26. Liu, J., Wang, X., Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and MATLAB Simulation., Springer-Verlag, Berlin - Heidelberg 2012. 
  27. McEneaney, W. M., Pandey, A., , Kybernetika 52 (2016), 666-695. MR3602010DOI
  28. Mondié, S., Michiels, W., , IEEE Trans. Automat. Control 48 (2003), 2207-2212. MR2027246DOI
  29. Morawski, M., Ignaciuk, P., , Control Eng. Prac. 55 (2016), 127-138. DOI
  30. Morawski, M., Ignaciuk, P., , Comput. Commun. 132 (2018), 56-64. DOI
  31. Naim, M. M., Spiegler, V. I., Wikner, J., Towill, D. R., 10.1016/j.ejor.2017.05.014, Eur. J. Oper. Res. 263 (2017), 240-246. DOI10.1016/j.ejor.2017.05.014
  32. Neusser, Z., Valasek, M., Control of the underactuated mechanical systems using natural motion., Kybernetika 48 (2012), 223-241. MR2954322
  33. Normey-Rico, J. E., Camacho, E. F., , Control Eng. Prac. 16 (2008), 407-428. DOI
  34. Peng, Ch., Yue, D., Han, Q.-L., Communication and Control for Networked Complex Systems., Springer-Verlag, Berlin - Heidelberg 2015. MR3328677
  35. Petre, E., Tebbani, S., Selisteanu, D., , Asian J. Control. 17 (2015), 1767-1778. MR3397752DOI
  36. Richard, J., Gouaisbaut, F., Perruquetti, W., Sliding mode control in the presence of delay., Kybernetika 37 (2001), 277-294. MR1859086
  37. Slotine, J.-J., Li, W., Applied Nonlinear Control., Prentice Hall, Englewood Cliffs 1991. Zbl0753.93036
  38. Suarez, O. J., Vega, C. J., Elvira-Ceja, S., Sanchez, E. N., Rodriguez, D. I., , Kybernetika 54 (2018), 1011-1032. MR3893133DOI
  39. Sun, P., Zhang, L., Zhang, K., , Kybernetika 54 (2018), 1091-1104. MR3893137DOI
  40. Utkin, V. I., , IEEE Trans. Autom. Control 22 (1977), 212-222. MR0484664DOI
  41. Xu, R., Liu, Y., Gao, C., Wang, S., Soft variable structure control with differential equation for generalized systems., In: Proc. 26th Chinese Control Dec. Conf., Changsha 2014, pp. 530-535. MR2228135
  42. Yang, X., Yan, J., Hua, Ch., Guan, X., , Int. J. Robust Nonlin. 30 (2020), 121-141. MR4049003DOI
  43. Yang, K.-Y., Zhang, L.-L., Zhang, J., Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control., Kybernetika 51 (2015), 1084-1100. MR3453687
  44. Zhang, D., Shen, Y., Xia, X., , Kybernetika 52 (2016), 441-460. MR3532516DOI
  45. Zhong, Q.-Ch., Robust Control of Time-Delay Systems., Springer-Verlag, London 2006. MR1761689

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.