### A study on the relationship between connecting different types of nodes and disassortativity by degree.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

It is well known that the k-ary n-cube has been one of the most efficient interconnection networks for distributed-memory parallel systems. A k-ary n-cube is bipartite if and only if k is even. Let (X,Y) be a bipartition of a k-ary 2-cube (even integer k ≥ 4). In this paper, we prove that for any two healthy vertices u ∈ X, v ∈ Y, there exists a hamiltonian path from u to v in the faulty k-ary 2-cube with one faulty vertex in each part.

In this paper, we investigate the finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures. We propose new adaptive controllers, with which we can synchronize two complex dynamical networks within finite time. Sufficient conditions for the finite-time adaptive outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to demonstrate the effectiveness and feasibility of the...

In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain...

The geometry of complex networks is closely related with their structure and function. In this paper, we investigate the Gromov-hyperbolicity of the Newman-Watts model of small-world networks. It is known that asymptotic Erdős-Rényi random graphs are not hyperbolic. We show that the Newman-Watts ones built on top of them by adding lattice-induced clustering are not hyperbolic as the network size goes to infinity. Numerical simulations are provided to illustrate the effects of various parameters...

Low dimensional ODE approximations that capture the main characteristics of SIS-type epidemic propagation along a cycle graph are derived. Three different methods are shown that can accurately predict the expected number of infected nodes in the graph. The first method is based on the derivation of a master equation for the number of infected nodes. This uses the average number of SI edges for a given number of the infected nodes. The second approach is based on the observation that the epidemic...

In this paper we prove that random d-regular graphs with d ≥ 3 have traffic congestion of the order O(n logd−13 n) where n is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ-hyperbolic for any non-negative δ almost surely as n → ∞.

We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large...

In this paper, we study lag synchronization between two dynamical networks with non-derivative and derivative couplings via pinning control. We design two types of pinning control schemes, including linear and adaptive feedback controllers. With the corresponding control algorithms, we obtain two theorems on the lag synchronization based on Schur complement and Barbalat's lemma. In addition, we obtain the domain for the linear feedback gains. Finally, we provide two numerical examples to show the...