Consensus-based state estimation for multi-agent systems with constraint information
Chen Hu; Weiwei Qin; Zhenhua Li; Bing He; Gang Liu
Kybernetika (2017)
- Volume: 53, Issue: 3, page 545-561
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHu, Chen, et al. "Consensus-based state estimation for multi-agent systems with constraint information." Kybernetika 53.3 (2017): 545-561. <http://eudml.org/doc/294636>.
@article{Hu2017,
abstract = {This paper considers a distributed state estimation problem for multi-agent systems under state inequality constraints. We first give a distributed estimation algorithm by projecting the consensus estimate with help of the consensus-based Kalman filter (CKF) and projection on the surface of constraints. The consensus step performs not only on the state estimation but also on the error covariance obtained by each agent. Under collective observability and connective assumptions, we show that consensus of error covariance is bounded. Based on the Lyapunov method and projection, we provide and prove convergence conditions of the proposed algorithm and demonstrate its effectiveness via numerical simulations.},
author = {Hu, Chen, Qin, Weiwei, Li, Zhenhua, He, Bing, Liu, Gang},
journal = {Kybernetika},
keywords = {multi-agent systems; distributed Kalman filter; state constraints; stability},
language = {eng},
number = {3},
pages = {545-561},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Consensus-based state estimation for multi-agent systems with constraint information},
url = {http://eudml.org/doc/294636},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Hu, Chen
AU - Qin, Weiwei
AU - Li, Zhenhua
AU - He, Bing
AU - Liu, Gang
TI - Consensus-based state estimation for multi-agent systems with constraint information
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 3
SP - 545
EP - 561
AB - This paper considers a distributed state estimation problem for multi-agent systems under state inequality constraints. We first give a distributed estimation algorithm by projecting the consensus estimate with help of the consensus-based Kalman filter (CKF) and projection on the surface of constraints. The consensus step performs not only on the state estimation but also on the error covariance obtained by each agent. Under collective observability and connective assumptions, we show that consensus of error covariance is bounded. Based on the Lyapunov method and projection, we provide and prove convergence conditions of the proposed algorithm and demonstrate its effectiveness via numerical simulations.
LA - eng
KW - multi-agent systems; distributed Kalman filter; state constraints; stability
UR - http://eudml.org/doc/294636
ER -
References
top- Agniel, R. G., Jury, E. I, 10.1137/0309027, SIAM J. Control 9 (1971), 372-384. MR0304038DOI10.1137/0309027
- Battistelli, G., Chisci, L., 10.1016/j.automatica.2013.11.042, Automatica 50 (2014), 707-718. MR3173970DOI10.1016/j.automatica.2013.11.042
- Bell, B. M., Burke, J. V., Pillonetto, G., 10.1016/j.automatica.2008.05.029, Automatica 45 (2009), 25-33. MR2531490DOI10.1016/j.automatica.2008.05.029
- Boyd, S., Vandenberghe, L., 10.1017/cbo9780511804441, Cambridge University Press, Cambridge 2004. Zbl1058.90049MR2061575DOI10.1017/cbo9780511804441
- Cattivelli, F., Sayed, A., 10.1109/tac.2010.2042987, IEEE Trans. Automat. Control 55 (2010), 2069-2084. MR2722500DOI10.1109/tac.2010.2042987
- Das, S., Moura, J. M. F., 10.1109/tsp.2015.2424205, IEEE Trans. Signal Process. 63 (2015), 4458-4473. MR3375283DOI10.1109/tsp.2015.2424205
- Godsil, C., Royle, G., 10.1007/978-1-4613-0163-9, Springer-Verlag, New York 2001. Zbl0968.05002MR1829620DOI10.1007/978-1-4613-0163-9
- Goodwin, G. C., Seron, M. M., Doná, J. A. De, 10.1007/b138145, Springer-Verlag, New York 2006. MR2085919DOI10.1007/b138145
- Gupta, N., Hauser, R., , arXiv preprint arXiv:0709.2791 MR0426293DOI
- Hu, J., Hu, X., 10.1109/chicc.2008.4605514, In: Proc. 27th Chinese Control Conference, Kunming 2008, 540-545. MR2425665DOI10.1109/chicc.2008.4605514
- Hu, J., Hu, X., 10.1016/j.automatica.2010.08.016, Automatica 46 (2010), 2041-2046. MR2878229DOI10.1016/j.automatica.2010.08.016
- Hu, C., Qin, W., He, B., Liu, G., 10.14736/kyb-2015-5-0814, Kybernetika 51 (2014), 814-829. MR3445986DOI10.14736/kyb-2015-5-0814
- Hu, J., Xie, L., Zhang, C., 10.1109/tsp.2011.2175386, IEEE Trans. Signal Process. 60 (2012), 891-902. MR2919485DOI10.1109/tsp.2011.2175386
- Kamal, A. T., Farrell, J. A., Roy-Chowdhury, A. K., 10.1109/tac.2013.2277621, IEEE Trans. Automat. Control 58 (2013), 3112-3125. MR3152272DOI10.1109/tac.2013.2277621
- Khan, U. A., Jadbabaie, A., 10.1016/j.automatica.2014.05.008, Automatica 50 (2014), 1909-1914. MR3230893DOI10.1016/j.automatica.2014.05.008
- Ko, S., Bitmead, R., 10.1016/j.automatica.2007.01.017, Automatica 43 (2007), 1363-1368. MR2320519DOI10.1016/j.automatica.2007.01.017
- Matei, I., Baras, J. S., 10.1016/j.automatica.2012.05.042, Automatica 48 (2012), 1776-1782. MR2950429DOI10.1016/j.automatica.2012.05.042
- Nedić, A., Ozdaglar, A., Parrilo, P. A., 10.1109/tac.2010.2041686, IEEE Trans. Automat Control 55 (2010), 922-938. MR2654432DOI10.1109/tac.2010.2041686
- Olfati-Saber, R., 10.1109/cdc.2007.4434303, in Proc. IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498. DOI10.1109/cdc.2007.4434303
- Olfati-Saber, R., 10.1109/cdc.2009.5399678, In: Proc. Joint IEEE Conference on Decision and Control and Chinese Control Conference, Shanghai 2009, pp. 7036-7042. DOI10.1109/cdc.2009.5399678
- Reif, K., Günther, S., Yaz, E., Unbehauen, R., 10.1109/9.754809, IEEE Trans. Automat. Control 44 (1999), 714-728. MR1684426DOI10.1109/9.754809
- Shi, G., Johansson, K., Hong, Y., 10.1109/tac.2012.2215261, IEEE Trans. Automatic Control 58 (2013), 610-622. MR3029459DOI10.1109/tac.2012.2215261
- Simon, D., 10.1049/iet-cta.2009.0032, IET Control Theory Appl. 4 (2010), 1303-1318. MR2757297DOI10.1049/iet-cta.2009.0032
- Simon, D., Chia, T. L., 10.1109/7.993234, IEEE Trans. Aerospace Electronic Systems 38 (2002), 128-136. DOI10.1109/7.993234
- Simon, D., Simon, D. L., 10.1049/ip-cta:20050074, IEE Proc. Control Theory Appl. 153 (2006), 371-378. DOI10.1049/ip-cta:20050074
- Stanković, S. S., Stanković, M. S., Stipanović, D. M., 10.1016/j.automatica.2009.02.014, Automatica 45 (2009), 1397-1406. MR2879441DOI10.1016/j.automatica.2009.02.014
- Tarn, T. J., Rasis, Y., 10.1109/tac.1976.1101300, IEEE Trans. Automat. Control 21 (1976), 441-448. MR0411794DOI10.1109/tac.1976.1101300
- Xiao, L., Boyd, S., 10.1016/j.sysconle.2004.02.022, Syst. Control Lett. 53 (2004), 65-78. Zbl1157.90347MR2077189DOI10.1016/j.sysconle.2004.02.022
- Zhou, Z., Fang, H., Hong, Y., 10.1109/icarcv.2012.6485124, In: Proc. 12th International Conference on Control Automation Robotics Vision (ICARCV), Guangzhou 2012, pp. 1818-1823. DOI10.1109/icarcv.2012.6485124
- Zhou, Z., Fang, H., Hong, Y., 10.1109/tac.2013.2246476, IEEE Trans. Automat. Control 58 (2013), 2096-2101. MR3090041DOI10.1109/tac.2013.2246476
Citations in EuDML Documents
top- Ming Lyu, Jie Zhang, YuMing Bo, Variance-Constrained finite-horizon filtering for multi-rate time-varying networked systems based on stochastic protocols
- Chaoqun Guo, Jiangping Hu, Jiasheng Hao, Sergej Čelikovský, Xiaoming Hu, Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.