Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions

Chaoqun Guo; Jiangping Hu; Jiasheng Hao; Sergej Čelikovský; Xiaoming Hu

Kybernetika (2023)

  • Volume: 59, Issue: 3, page 342-364
  • ISSN: 0023-5954

Abstract

top
In this paper, a fixed-time safe control problem is investigated for an uncertain high-order nonlinear pure-feedback system with state constraints. A new nonlinear transformation function is firstly proposed to handle both the constrained and unconstrained cases in a unified way. Further, a radial basis function neural network is constructed to approximate the unknown dynamics in the system and a fixed-time dynamic surface control (FDSC) technique is developed to facilitate the fixed-time control design for the uncertain high-order pure-feedback system. Combined with the proposed unified transformation function and the FDSC technique, an adaptive fixed-time control strategy is proposed to guarantee the fixed-time tracking. The novel original results of the paper allow to design the independent unified flexible fixed-time control strategy taking into account the actual possible constraints, either present or missing. Numerical examples are presented to demonstrate the proposed fixed-time tracking control strategy.

How to cite

top

Guo, Chaoqun, et al. "Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions." Kybernetika 59.3 (2023): 342-364. <http://eudml.org/doc/299468>.

@article{Guo2023,
abstract = {In this paper, a fixed-time safe control problem is investigated for an uncertain high-order nonlinear pure-feedback system with state constraints. A new nonlinear transformation function is firstly proposed to handle both the constrained and unconstrained cases in a unified way. Further, a radial basis function neural network is constructed to approximate the unknown dynamics in the system and a fixed-time dynamic surface control (FDSC) technique is developed to facilitate the fixed-time control design for the uncertain high-order pure-feedback system. Combined with the proposed unified transformation function and the FDSC technique, an adaptive fixed-time control strategy is proposed to guarantee the fixed-time tracking. The novel original results of the paper allow to design the independent unified flexible fixed-time control strategy taking into account the actual possible constraints, either present or missing. Numerical examples are presented to demonstrate the proposed fixed-time tracking control strategy.},
author = {Guo, Chaoqun, Hu, Jiangping, Hao, Jiasheng, Čelikovský, Sergej, Hu, Xiaoming},
journal = {Kybernetika},
keywords = {fixed-time safe control; nonlinear pure-feedback systems; state constrains; dynamic surface control; unified transformation function},
language = {eng},
number = {3},
pages = {342-364},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions},
url = {http://eudml.org/doc/299468},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Guo, Chaoqun
AU - Hu, Jiangping
AU - Hao, Jiasheng
AU - Čelikovský, Sergej
AU - Hu, Xiaoming
TI - Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 3
SP - 342
EP - 364
AB - In this paper, a fixed-time safe control problem is investigated for an uncertain high-order nonlinear pure-feedback system with state constraints. A new nonlinear transformation function is firstly proposed to handle both the constrained and unconstrained cases in a unified way. Further, a radial basis function neural network is constructed to approximate the unknown dynamics in the system and a fixed-time dynamic surface control (FDSC) technique is developed to facilitate the fixed-time control design for the uncertain high-order pure-feedback system. Combined with the proposed unified transformation function and the FDSC technique, an adaptive fixed-time control strategy is proposed to guarantee the fixed-time tracking. The novel original results of the paper allow to design the independent unified flexible fixed-time control strategy taking into account the actual possible constraints, either present or missing. Numerical examples are presented to demonstrate the proposed fixed-time tracking control strategy.
LA - eng
KW - fixed-time safe control; nonlinear pure-feedback systems; state constrains; dynamic surface control; unified transformation function
UR - http://eudml.org/doc/299468
ER -

References

top
  1. Andrieu, V., Praly, L., Astolfi, A., , SIAM J. Control Optim. 47 (2009), 1814-1850. MR2421331DOI
  2. Bhat, S., Bernstein, D., , Math. Control Signals Syst. 17 (2005), 101-127. Zbl1110.34033MR2150956DOI
  3. Cao, Y., Wen, C., Song, Y., , IEEE Trans. Cybernet. 51 (2021), 1262-1271. DOI
  4. Čelikovský, S., Anderle, M., Vyhlídal, T., , In: IEEE Conference on Decision and Control (CDC) 2021, pp. 3893-3900. DOI
  5. Čelikovský, S., Aranda-Bricaire, E., , Syst. Control Lett. 36 (1999), 21-37. MR1750623DOI
  6. Chen, B., Hu, J., Zhao, Y., Ghosh, B. K., , IEEE Trans. Syst. Man Cybernet. Syst. 52 (2022), 6618-6629. DOI
  7. Cui, E., Jing, Y., Gao, X., , IET Control Theory Appl. 14 (2020), 2419-2428. MR4417972DOI
  8. Fang, L., Ding, S., Park, J. H., Ma, L., , IEEE Trans. Circuits Syst. I, Reg. Papers 68 (2021), 2626-2638. MR4290703DOI
  9. Filippov, A. F., Differential equations with discontinuous right-hand sides., J. Math. Anal. Appl. 154 (1998), 99-128. MR0114016
  10. Gómez-Gutiérrez, D., Vázquez, C. R., Čelikovský, S., Sánchez-Torres, J. D., Ruiz-León, J., , Int. J. Control 93 (2020), 2120-2134. MR4134400DOI
  11. Guiochet, J., Machin, M., Waeselynck, H., , Robotics Autonomous Systems 94 (2017), 43-52. DOI
  12. Guo, C., Hu, J., , IEEE Trans. Circuits Syst. II, Exp. Briefs (2023). DOI
  13. Guo, C., Hu, J., Fixed-time stabilization of high-order uncertain nonlinear systems: output feedback control design and settling time analysis., J. Syst. Sci. Complex (2023), To appear. MR4439669
  14. Hong, Y., Jiang, Z., , IEEE Trans. Automat. Control 51 (2006), 1950-1956. MR2284421DOI
  15. Hu, C., Qin, W., Li, Z., He, B., Liu, G., , Kybernetika 53 (2017), 545-561. MR3684685DOI
  16. Jin, X., Xu, J. X., , Automatica 49 (2013), 2508-2516. MR3072644DOI
  17. Krstic, M., Kokotovic, P. V., Kanellakopoulos, I., Nonlinear and Adaptive Control Design., John Wiley and Sons, Inc. 1995. 
  18. Li, Y. X., , Automatica 121 (2020), 109181. MR4131834DOI
  19. Li, J., Yang, Y., Hua, C., Guan, X., , IET Control Theory Appl. 11 (2017), 1184-1193. MR3700336DOI
  20. Liu, B., Hou, M., Ni, J., Li, Y., Wu, Z., , J. Franklin Inst. 357 (2020), 9709-9732. MR4148332DOI
  21. Liu, Y., Zhang, H., Sun, J., Wang, Y., , IEEE Trans. Fuzzy Syst. 30 (2022), 162-174. DOI
  22. Liu, Y., Zhang, H., Wang, Y., Yu, S., , Int. J. Robust Nonlinear Control 31 (2021), 6826-6844. MR4335261DOI
  23. Ma, J., Hu, J., , Kybernetika 58 (2022), 426-439. MR4494099DOI
  24. Ou, M., Sun, H., Zhang, Z., Li, L., Wang, X., , Kybernetika 57 (2021), 220-235. MR4273573DOI
  25. Polyakov, A., , IEEE Trans. Automat. Control 57 (2012), 2106-2110. MR2957184DOI
  26. Tang, Z., Ge, S. S., Tee, K. P., He, W., , IEEE Trans. Syst., Man, Cybern., Syst. 46 (2016), 1618-1629. MR3191823DOI
  27. Tian, B., Lu, H., Zuo, Z., , Nonlinear Dynam. 94 (2018), 2889-2899. DOI
  28. Wu, Z., Guo, J., Liu, B., Ni, J., Bu, X., , Int. J. Robust Nonlinear Control 31 (2021), 5865-5889. MR4329718DOI
  29. Yang, H., Ye, D., , J. Franklin Inst. 357 (2020), 11448-11471. MR4160619DOI
  30. Zhang, T., Xia, M., Yi, Y., , Automatica 81 (2017), 232-239. MR3654606DOI
  31. Zhao, K., Song, Y., , IEEE Trans. Automat. Control 64 (2019), 1265-1272. MR3922092DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.