Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay

Tianwei Zhang; Yongzhi Liao

Kybernetika (2017)

  • Volume: 53, Issue: 4, page 612-629
  • ISSN: 0023-5954

Abstract

top
By using some analytical techniques, modified inequalities and Mawhin's continuation theorem of coincidence degree theory, some sufficient conditions for the existence of at least one positive almost periodic solution of a kind of fishing model with delay are obtained. Further, the global attractivity of the positive almost periodic solution of this model is also considered. Finally, three examples are given to illustrate the main results of this paper.

How to cite

top

Zhang, Tianwei, and Liao, Yongzhi. "Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay." Kybernetika 53.4 (2017): 612-629. <http://eudml.org/doc/294685>.

@article{Zhang2017,
abstract = {By using some analytical techniques, modified inequalities and Mawhin's continuation theorem of coincidence degree theory, some sufficient conditions for the existence of at least one positive almost periodic solution of a kind of fishing model with delay are obtained. Further, the global attractivity of the positive almost periodic solution of this model is also considered. Finally, three examples are given to illustrate the main results of this paper.},
author = {Zhang, Tianwei, Liao, Yongzhi},
journal = {Kybernetika},
keywords = {almost periodic solution; coincidence degree; fishing model; global attractivity},
language = {eng},
number = {4},
pages = {612-629},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay},
url = {http://eudml.org/doc/294685},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Zhang, Tianwei
AU - Liao, Yongzhi
TI - Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 4
SP - 612
EP - 629
AB - By using some analytical techniques, modified inequalities and Mawhin's continuation theorem of coincidence degree theory, some sufficient conditions for the existence of at least one positive almost periodic solution of a kind of fishing model with delay are obtained. Further, the global attractivity of the positive almost periodic solution of this model is also considered. Finally, three examples are given to illustrate the main results of this paper.
LA - eng
KW - almost periodic solution; coincidence degree; fishing model; global attractivity
UR - http://eudml.org/doc/294685
ER -

References

top
  1. Berezansky, L., Braverman, E., Idels, L., 10.1016/j.camwa.2004.07.015, Comput. Math. Appl. 49 (2005), 549-563. MR2124386DOI10.1016/j.camwa.2004.07.015
  2. Berezansky, L., Idels, L., 10.1016/j.aml.2007.03.027, Appl. Math. Lett. 21 (2008), 447-452. MR2402835DOI10.1016/j.aml.2007.03.027
  3. Dai, B. X., Su, H., Hu, D. W., 10.1016/j.na.2007.11.036, Nonlinear Anal. TMA 70 (2009), 126-134. MR2468223DOI10.1016/j.na.2007.11.036
  4. Du, B., Hu, M., Lian, X., 10.1007/s40840-016-0325-3, Bull. Malays. Math. Sci. Soc. 40 (2016), 1, 487-503. MR3592918DOI10.1007/s40840-016-0325-3
  5. Du, B., Liu, Y., Batarfi, H. A., 10.1016/j.neucom.2015.08.047, Neurocomputing 173 (2016), 921-929. DOI10.1016/j.neucom.2015.08.047
  6. Du, B., Liu, Y., Atiatallah, A. I., 10.1016/j.jfranklin.2015.11.013, J. Franklin Inst., Engrg. Appl. Math. 353 (2016), 448-461. MR3448152DOI10.1016/j.jfranklin.2015.11.013
  7. Egami, C., 10.1016/j.nonrwa.2007.10.010, Nonlinear Anal. RWA 10 (2009), 494-505. MR2451726DOI10.1016/j.nonrwa.2007.10.010
  8. Fan, Y. H., Wang, L. L., 10.1016/j.nonrwa.2008.10.032, Nonlinear Anal. RWA 10 (2009), 3275-3284. MR2523287DOI10.1016/j.nonrwa.2008.10.032
  9. Fink, A. M., 10.1007/bfb0070324, Spring-Verlag, Berlin, Heidleberg, New York, 1974. MR0460799DOI10.1007/bfb0070324
  10. Gaines, R., Mawhin, J., 10.1007/bfb0089537, Springer Verlag, Berlin 1977. MR0637067DOI10.1007/bfb0089537
  11. Gopalsamy, K., 10.1007/978-94-015-7920-9, Kluwer Acad. Publ., 1992. MR1163190DOI10.1007/978-94-015-7920-9
  12. He, C. Y., Almost Periodic Differential Equations., Higher Education Publishing House, Beijing, 1992 (in Chinese). 
  13. Kot, M., 10.1017/cbo9780511608520, Cambr. Univ. Press, 2001. MR2006645DOI10.1017/cbo9780511608520
  14. Kuang, Y., 10.1016/s0076-5392(08)x6164-8, Academic Press, Inc., 1993. Zbl0777.34002MR1218880DOI10.1016/s0076-5392(08)x6164-8
  15. Liang, R. X., Shen, J. H., 10.1016/j.amc.2010.06.003, Appl. Math. Comput. 217 (2010), 661-676. MR2678579DOI10.1016/j.amc.2010.06.003
  16. Liao, Y. Z., Zhang, T. W., 10.1155/2012/742102, Discrete Dynamics in Nature and Society Volume 2012, Article ID 742102, 27 pages. MR3008486DOI10.1155/2012/742102
  17. Lin, X. L., Jiang, Y. L., Wang, X. Q., 10.1016/j.na.2010.05.003, Nonlinear Anal. TMA 73 (2010), 1684-1697. MR2661351DOI10.1016/j.na.2010.05.003
  18. Lu, S., Applications of topological degree associated condensing field to the existence of periodic solutions for neutral functional differential equations with nonlinear difference operator., Acta Mathematica Sinica, English Series, to appear. MR3568082
  19. Lu, S., Zhong, T., Chen, L., Periodic solutions for p -Laplacian Rayleigh equations with singularities., Boundary Value Problems 2016, 96 (2016). MR3499658
  20. Lu, S., Chen, L., 10.1016/j.jmaa.2011.10.022, J. Math. Anal. Appl. 387 (2012), 1127-1136. MR2853200DOI10.1016/j.jmaa.2011.10.022
  21. Shu, J. Y., Zhang, T. W., Multiplicity of almost periodic oscillations in a harvesting mutualism model with time delays., Dynam. Cont. Disc. Impul. Sys. B: Appl. Algor. 20 (2013), 463-483. MR3135007
  22. Wang, K., 10.1016/j.nonrwa.2008.08.015, Nonlinear Anal. RWA 10 (2009), 2774-2783. MR2523240DOI10.1016/j.nonrwa.2008.08.015
  23. Wang, X. P., 10.1016/j.nonrwa.2009.11.023, Nonlinear Anal.: RWA 11 (2010), 3309-3315. MR2683790DOI10.1016/j.nonrwa.2009.11.023
  24. Wang, K., 10.1016/j.nonrwa.2010.06.003, Nonlinear Anal. RWA 12 (2011), 137-145. MR2728669DOI10.1016/j.nonrwa.2010.06.003
  25. Wang, Q., Ding, M. M., Wang, Z. J., Zhang, H. Y., 10.1016/j.nonrwa.2008.08.015, Nonlinear Anal. RWA 11 (2010), 2675-2685. MR2661935DOI10.1016/j.nonrwa.2008.08.015
  26. Zhang, T. W., 10.1002/mma.2826, Math. Meth. Appl. Sci. 37 (2013), 686-697. MR3180630DOI10.1002/mma.2826
  27. Zhang, T. W., 10.1142/s1793524514500296, Int. J. Biomath. 7 (2014), 1450029 (22 pages). MR3210478DOI10.1142/s1793524514500296
  28. Zhang, T. W., Gan, X. R., Existence and permanence of almost periodic solutions for Leslie-Gower predator-prey model with variable delays., Elect. J. Differ. Equa. 2013 (2013), 1-21. MR3065058
  29. Zhang, T. W., Gan, X. R., 10.1016/j.cnsns.2013.06.019, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. MR3142456DOI10.1016/j.cnsns.2013.06.019
  30. Zhang, T. W., Li, Y. K., 10.1142/s1793524511001131, Int. J. Biomath. 4 (2011), 23-34. MR2795143DOI10.1142/s1793524511001131
  31. Zhang, T. W., Li, Y. K., Ye, Y., 10.1016/j.cnsns.2011.08.008, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1408-1422. MR2843805DOI10.1016/j.cnsns.2011.08.008
  32. Zhang, T. W., Li, Y. K., Ye, Y., 10.1016/j.cnsns.2010.06.033, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1564-1573. MR2736833DOI10.1016/j.cnsns.2010.06.033
  33. Zhang, G. D., Shen, Y., Chen, B. S., 10.1016/j.jmaa.2012.05.045, J. Math. Anal. Appl. 395 (2012), 298-306. MR2943624DOI10.1016/j.jmaa.2012.05.045
  34. Zhu, Y. L., Wang, K., 10.1016/j.jmaa.2011.05.081, J. Math. Anal. Appl. 384 (2011), 400-408. MR2825193DOI10.1016/j.jmaa.2011.05.081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.