Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay
Kybernetika (2017)
- Volume: 53, Issue: 4, page 612-629
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZhang, Tianwei, and Liao, Yongzhi. "Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay." Kybernetika 53.4 (2017): 612-629. <http://eudml.org/doc/294685>.
@article{Zhang2017,
abstract = {By using some analytical techniques, modified inequalities and Mawhin's continuation theorem of coincidence degree theory, some sufficient conditions for the existence of at least one positive almost periodic solution of a kind of fishing model with delay are obtained. Further, the global attractivity of the positive almost periodic solution of this model is also considered. Finally, three examples are given to illustrate the main results of this paper.},
author = {Zhang, Tianwei, Liao, Yongzhi},
journal = {Kybernetika},
keywords = {almost periodic solution; coincidence degree; fishing model; global attractivity},
language = {eng},
number = {4},
pages = {612-629},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay},
url = {http://eudml.org/doc/294685},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Zhang, Tianwei
AU - Liao, Yongzhi
TI - Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 4
SP - 612
EP - 629
AB - By using some analytical techniques, modified inequalities and Mawhin's continuation theorem of coincidence degree theory, some sufficient conditions for the existence of at least one positive almost periodic solution of a kind of fishing model with delay are obtained. Further, the global attractivity of the positive almost periodic solution of this model is also considered. Finally, three examples are given to illustrate the main results of this paper.
LA - eng
KW - almost periodic solution; coincidence degree; fishing model; global attractivity
UR - http://eudml.org/doc/294685
ER -
References
top- Berezansky, L., Braverman, E., Idels, L., 10.1016/j.camwa.2004.07.015, Comput. Math. Appl. 49 (2005), 549-563. MR2124386DOI10.1016/j.camwa.2004.07.015
- Berezansky, L., Idels, L., 10.1016/j.aml.2007.03.027, Appl. Math. Lett. 21 (2008), 447-452. MR2402835DOI10.1016/j.aml.2007.03.027
- Dai, B. X., Su, H., Hu, D. W., 10.1016/j.na.2007.11.036, Nonlinear Anal. TMA 70 (2009), 126-134. MR2468223DOI10.1016/j.na.2007.11.036
- Du, B., Hu, M., Lian, X., 10.1007/s40840-016-0325-3, Bull. Malays. Math. Sci. Soc. 40 (2016), 1, 487-503. MR3592918DOI10.1007/s40840-016-0325-3
- Du, B., Liu, Y., Batarfi, H. A., 10.1016/j.neucom.2015.08.047, Neurocomputing 173 (2016), 921-929. DOI10.1016/j.neucom.2015.08.047
- Du, B., Liu, Y., Atiatallah, A. I., 10.1016/j.jfranklin.2015.11.013, J. Franklin Inst., Engrg. Appl. Math. 353 (2016), 448-461. MR3448152DOI10.1016/j.jfranklin.2015.11.013
- Egami, C., 10.1016/j.nonrwa.2007.10.010, Nonlinear Anal. RWA 10 (2009), 494-505. MR2451726DOI10.1016/j.nonrwa.2007.10.010
- Fan, Y. H., Wang, L. L., 10.1016/j.nonrwa.2008.10.032, Nonlinear Anal. RWA 10 (2009), 3275-3284. MR2523287DOI10.1016/j.nonrwa.2008.10.032
- Fink, A. M., 10.1007/bfb0070324, Spring-Verlag, Berlin, Heidleberg, New York, 1974. MR0460799DOI10.1007/bfb0070324
- Gaines, R., Mawhin, J., 10.1007/bfb0089537, Springer Verlag, Berlin 1977. MR0637067DOI10.1007/bfb0089537
- Gopalsamy, K., 10.1007/978-94-015-7920-9, Kluwer Acad. Publ., 1992. MR1163190DOI10.1007/978-94-015-7920-9
- He, C. Y., Almost Periodic Differential Equations., Higher Education Publishing House, Beijing, 1992 (in Chinese).
- Kot, M., 10.1017/cbo9780511608520, Cambr. Univ. Press, 2001. MR2006645DOI10.1017/cbo9780511608520
- Kuang, Y., 10.1016/s0076-5392(08)x6164-8, Academic Press, Inc., 1993. Zbl0777.34002MR1218880DOI10.1016/s0076-5392(08)x6164-8
- Liang, R. X., Shen, J. H., 10.1016/j.amc.2010.06.003, Appl. Math. Comput. 217 (2010), 661-676. MR2678579DOI10.1016/j.amc.2010.06.003
- Liao, Y. Z., Zhang, T. W., 10.1155/2012/742102, Discrete Dynamics in Nature and Society Volume 2012, Article ID 742102, 27 pages. MR3008486DOI10.1155/2012/742102
- Lin, X. L., Jiang, Y. L., Wang, X. Q., 10.1016/j.na.2010.05.003, Nonlinear Anal. TMA 73 (2010), 1684-1697. MR2661351DOI10.1016/j.na.2010.05.003
- Lu, S., Applications of topological degree associated condensing field to the existence of periodic solutions for neutral functional differential equations with nonlinear difference operator., Acta Mathematica Sinica, English Series, to appear. MR3568082
- Lu, S., Zhong, T., Chen, L., Periodic solutions for -Laplacian Rayleigh equations with singularities., Boundary Value Problems 2016, 96 (2016). MR3499658
- Lu, S., Chen, L., 10.1016/j.jmaa.2011.10.022, J. Math. Anal. Appl. 387 (2012), 1127-1136. MR2853200DOI10.1016/j.jmaa.2011.10.022
- Shu, J. Y., Zhang, T. W., Multiplicity of almost periodic oscillations in a harvesting mutualism model with time delays., Dynam. Cont. Disc. Impul. Sys. B: Appl. Algor. 20 (2013), 463-483. MR3135007
- Wang, K., 10.1016/j.nonrwa.2008.08.015, Nonlinear Anal. RWA 10 (2009), 2774-2783. MR2523240DOI10.1016/j.nonrwa.2008.08.015
- Wang, X. P., 10.1016/j.nonrwa.2009.11.023, Nonlinear Anal.: RWA 11 (2010), 3309-3315. MR2683790DOI10.1016/j.nonrwa.2009.11.023
- Wang, K., 10.1016/j.nonrwa.2010.06.003, Nonlinear Anal. RWA 12 (2011), 137-145. MR2728669DOI10.1016/j.nonrwa.2010.06.003
- Wang, Q., Ding, M. M., Wang, Z. J., Zhang, H. Y., 10.1016/j.nonrwa.2008.08.015, Nonlinear Anal. RWA 11 (2010), 2675-2685. MR2661935DOI10.1016/j.nonrwa.2008.08.015
- Zhang, T. W., 10.1002/mma.2826, Math. Meth. Appl. Sci. 37 (2013), 686-697. MR3180630DOI10.1002/mma.2826
- Zhang, T. W., 10.1142/s1793524514500296, Int. J. Biomath. 7 (2014), 1450029 (22 pages). MR3210478DOI10.1142/s1793524514500296
- Zhang, T. W., Gan, X. R., Existence and permanence of almost periodic solutions for Leslie-Gower predator-prey model with variable delays., Elect. J. Differ. Equa. 2013 (2013), 1-21. MR3065058
- Zhang, T. W., Gan, X. R., 10.1016/j.cnsns.2013.06.019, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. MR3142456DOI10.1016/j.cnsns.2013.06.019
- Zhang, T. W., Li, Y. K., 10.1142/s1793524511001131, Int. J. Biomath. 4 (2011), 23-34. MR2795143DOI10.1142/s1793524511001131
- Zhang, T. W., Li, Y. K., Ye, Y., 10.1016/j.cnsns.2011.08.008, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1408-1422. MR2843805DOI10.1016/j.cnsns.2011.08.008
- Zhang, T. W., Li, Y. K., Ye, Y., 10.1016/j.cnsns.2010.06.033, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1564-1573. MR2736833DOI10.1016/j.cnsns.2010.06.033
- Zhang, G. D., Shen, Y., Chen, B. S., 10.1016/j.jmaa.2012.05.045, J. Math. Anal. Appl. 395 (2012), 298-306. MR2943624DOI10.1016/j.jmaa.2012.05.045
- Zhu, Y. L., Wang, K., 10.1016/j.jmaa.2011.05.081, J. Math. Anal. Appl. 384 (2011), 400-408. MR2825193DOI10.1016/j.jmaa.2011.05.081
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.