On stability and the Łojasiewicz exponent at infinity of coercive polynomials
Kybernetika (2019)
- Volume: 55, Issue: 2, page 359-366
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBajbar, Tomáš, and Behrends, Sönke. "On stability and the Łojasiewicz exponent at infinity of coercive polynomials." Kybernetika 55.2 (2019): 359-366. <http://eudml.org/doc/294705>.
@article{Bajbar2019,
abstract = {In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them.},
author = {Bajbar, Tomáš, Behrends, Sönke},
journal = {Kybernetika},
keywords = {coercivity; stability of coercivity; Lojasiewicz exponent at infinity},
language = {eng},
number = {2},
pages = {359-366},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On stability and the Łojasiewicz exponent at infinity of coercive polynomials},
url = {http://eudml.org/doc/294705},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Bajbar, Tomáš
AU - Behrends, Sönke
TI - On stability and the Łojasiewicz exponent at infinity of coercive polynomials
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 359
EP - 366
AB - In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them.
LA - eng
KW - coercivity; stability of coercivity; Lojasiewicz exponent at infinity
UR - http://eudml.org/doc/294705
ER -
References
top- Bajbar, T., Stein, O., 10.1137/140980624, SIAM J. Optim. 25 (2015), 1542-1570. MR3376789DOI10.1137/140980624
- Bajbar, T., Stein, O., 10.1080/02331934.2018.1426585, Optimization 68 (2018), 1, 99..124. MR3902159DOI10.1080/02331934.2018.1426585
- Bajbar, T., Stein, O., 10.1007/s00209-017-1920-1, Math. Zeitschrift 288 (2018), 915-933. MR3778984DOI10.1007/s00209-017-1920-1
- Behrends, S., Geometric and Algebraic Approaches to Mixed-Integer Polynomial Optimization Using Sos Programming., PhD Thesis, Universität Göttingen 2017.
- Behrends, S., Hübner, R., Schöbel, A., 10.1007/s00186-017-0608-y, Math. Methods Oper. Res. 87 (2018), 73-107. MR3749410DOI10.1007/s00186-017-0608-y
- Bivià-Ausina, C., 10.1007/s00209-007-0129-0, Math. Zeitschrift 257 (2007), 745-767. MR2342551DOI10.1007/s00209-007-0129-0
- Chadzyński, J., Krasiński, T., 10.4064/ap-67-2-191-197, Ann. Polon. Math. 67 (1997), 2, 191-19. MR1460600DOI10.4064/ap-67-2-191-197
- Chen, Y., Dias, L. R. G., Takeuchi, K., Tibar, M., 10.5802/aif.2897, Ann. Inst. Fourier 64 (2014), 1807-1822. MR3330924DOI10.5802/aif.2897
- Din, M. S. El, 10.1145/1390768.1390781, In: Proc. Twenty-first international symposium on Symbolic and algebraic computation 2008, pp. 71-78. MR2500375DOI10.1145/1390768.1390781
- Gorin, E. A., 10.1070/rm1961v016n01abeh004100, Russian Math. Surveys 16 (1961), 93-119. MR0131418DOI10.1070/rm1961v016n01abeh004100
- Greuet, A., Din, M. Safey El, 10.1145/1993886.1993910, In: Proc. 36th international symposium on Symbolic and algebraic computation 2011, pp. 131-138. MR2895204DOI10.1145/1993886.1993910
- Greuet, A., Din, M. Safey El, 10.1137/130931308, SIAM J. Optim. 24 (2014), 1313-1343. MR3248043DOI10.1137/130931308
- Krasiński, T., On the Łojasiewicz exponent at infinity of polynomial mappings., Acta Math. Vietnam 32 (2007), 189-203. MR2368007
- Marshall, M., 10.4153/cmb-2003-054-7, Canadian Math. Bull. 46 (2003), 575-587. MR2011395DOI10.4153/cmb-2003-054-7
- Marshall, M., Positive polynomials and sums of squares., Amer. Math. Soc. (2008), 3-19. MR2383959
- Némethi, A., Zaharia, A., 10.1016/0019-3577(92)90039-n, Indagationes Math. 3 (1992), 323-335. MR1186741DOI10.1016/0019-3577(92)90039-n
- Nie, J., Demmel, J., Sturmfels, B., 10.1007/s10107-005-0672-6, Math. Programm. 106 (2006), 587-606. MR2216797DOI10.1007/s10107-005-0672-6
- Schweighofer, M., 10.1137/050647098, SIAM J. Optim. 17 (2006), 920-942. MR2257216DOI10.1137/050647098
- Vui, H. H., Pham, T. S., Minimizing polynomial functions., Acta Math. Vietnam. 32 (2007), 71-82. MR2348981
- Vui, H. H., Pham, T. S., 10.1137/090772903, SIAM J. Optim. 20 (2010), 3082-3103. MR2735945DOI10.1137/090772903
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.