On stability and the Łojasiewicz exponent at infinity of coercive polynomials

Tomáš Bajbar; Sönke Behrends

Kybernetika (2019)

  • Volume: 55, Issue: 2, page 359-366
  • ISSN: 0023-5954

Abstract

top
In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them.

How to cite

top

Bajbar, Tomáš, and Behrends, Sönke. "On stability and the Łojasiewicz exponent at infinity of coercive polynomials." Kybernetika 55.2 (2019): 359-366. <http://eudml.org/doc/294705>.

@article{Bajbar2019,
abstract = {In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them.},
author = {Bajbar, Tomáš, Behrends, Sönke},
journal = {Kybernetika},
keywords = {coercivity; stability of coercivity; Lojasiewicz exponent at infinity},
language = {eng},
number = {2},
pages = {359-366},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On stability and the Łojasiewicz exponent at infinity of coercive polynomials},
url = {http://eudml.org/doc/294705},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Bajbar, Tomáš
AU - Behrends, Sönke
TI - On stability and the Łojasiewicz exponent at infinity of coercive polynomials
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 359
EP - 366
AB - In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them.
LA - eng
KW - coercivity; stability of coercivity; Lojasiewicz exponent at infinity
UR - http://eudml.org/doc/294705
ER -

References

top
  1. Bajbar, T., Stein, O., 10.1137/140980624, SIAM J. Optim. 25 (2015), 1542-1570. MR3376789DOI10.1137/140980624
  2. Bajbar, T., Stein, O., 10.1080/02331934.2018.1426585, Optimization 68 (2018), 1, 99..124. MR3902159DOI10.1080/02331934.2018.1426585
  3. Bajbar, T., Stein, O., 10.1007/s00209-017-1920-1, Math. Zeitschrift 288 (2018), 915-933. MR3778984DOI10.1007/s00209-017-1920-1
  4. Behrends, S., Geometric and Algebraic Approaches to Mixed-Integer Polynomial Optimization Using Sos Programming., PhD Thesis, Universität Göttingen 2017. 
  5. Behrends, S., Hübner, R., Schöbel, A., 10.1007/s00186-017-0608-y, Math. Methods Oper. Res. 87 (2018), 73-107. MR3749410DOI10.1007/s00186-017-0608-y
  6. Bivià-Ausina, C., 10.1007/s00209-007-0129-0, Math. Zeitschrift 257 (2007), 745-767. MR2342551DOI10.1007/s00209-007-0129-0
  7. Chadzyński, J., Krasiński, T., 10.4064/ap-67-2-191-197, Ann. Polon. Math. 67 (1997), 2, 191-19. MR1460600DOI10.4064/ap-67-2-191-197
  8. Chen, Y., Dias, L. R. G., Takeuchi, K., Tibar, M., 10.5802/aif.2897, Ann. Inst. Fourier 64 (2014), 1807-1822. MR3330924DOI10.5802/aif.2897
  9. Din, M. S. El, 10.1145/1390768.1390781, In: Proc. Twenty-first international symposium on Symbolic and algebraic computation 2008, pp. 71-78. MR2500375DOI10.1145/1390768.1390781
  10. Gorin, E. A., 10.1070/rm1961v016n01abeh004100, Russian Math. Surveys 16 (1961), 93-119. MR0131418DOI10.1070/rm1961v016n01abeh004100
  11. Greuet, A., Din, M. Safey El, 10.1145/1993886.1993910, In: Proc. 36th international symposium on Symbolic and algebraic computation 2011, pp. 131-138. MR2895204DOI10.1145/1993886.1993910
  12. Greuet, A., Din, M. Safey El, 10.1137/130931308, SIAM J. Optim. 24 (2014), 1313-1343. MR3248043DOI10.1137/130931308
  13. Krasiński, T., On the Łojasiewicz exponent at infinity of polynomial mappings., Acta Math. Vietnam 32 (2007), 189-203. MR2368007
  14. Marshall, M., 10.4153/cmb-2003-054-7, Canadian Math. Bull. 46 (2003), 575-587. MR2011395DOI10.4153/cmb-2003-054-7
  15. Marshall, M., Positive polynomials and sums of squares., Amer. Math. Soc. (2008), 3-19. MR2383959
  16. Némethi, A., Zaharia, A., 10.1016/0019-3577(92)90039-n, Indagationes Math. 3 (1992), 323-335. MR1186741DOI10.1016/0019-3577(92)90039-n
  17. Nie, J., Demmel, J., Sturmfels, B., 10.1007/s10107-005-0672-6, Math. Programm. 106 (2006), 587-606. MR2216797DOI10.1007/s10107-005-0672-6
  18. Schweighofer, M., 10.1137/050647098, SIAM J. Optim. 17 (2006), 920-942. MR2257216DOI10.1137/050647098
  19. Vui, H. H., Pham, T. S., Minimizing polynomial functions., Acta Math. Vietnam. 32 (2007), 71-82. MR2348981
  20. Vui, H. H., Pham, T. S., 10.1137/090772903, SIAM J. Optim. 20 (2010), 3082-3103. MR2735945DOI10.1137/090772903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.