Invertible polynomial mappings via Newton non-degeneracy
Ying Chen[1]; Luis Renato G. Dias[1]; Kiyoshi Takeuchi[2]; Mihai Tibăr[3]
- [1] Universidade de São Paulo ICMC Av. Trabalhador São-Carlense, 400 CP Box 668, 13560-970 São Carlos São Paulo (Brazil)
- [2] University of Tsukuba Institute of Mathematics 1-1-1, Tennodai, Tsukuba Ibaraki, 305-8571 (Japon)
- [3] Université Lille 1 Mathématiques, Laboratoire Paul Painlevé 59655 Villeneuve d’Ascq (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 5, page 1807-1822
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChen, Ying, et al. "Invertible polynomial mappings via Newton non-degeneracy." Annales de l’institut Fourier 64.5 (2014): 1807-1822. <http://eudml.org/doc/275622>.
@article{Chen2014,
abstract = {We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.},
affiliation = {Universidade de São Paulo ICMC Av. Trabalhador São-Carlense, 400 CP Box 668, 13560-970 São Carlos São Paulo (Brazil); Universidade de São Paulo ICMC Av. Trabalhador São-Carlense, 400 CP Box 668, 13560-970 São Carlos São Paulo (Brazil); University of Tsukuba Institute of Mathematics 1-1-1, Tennodai, Tsukuba Ibaraki, 305-8571 (Japon); Université Lille 1 Mathématiques, Laboratoire Paul Painlevé 59655 Villeneuve d’Ascq (France)},
author = {Chen, Ying, Dias, Luis Renato G., Takeuchi, Kiyoshi, Tibăr, Mihai},
journal = {Annales de l’institut Fourier},
keywords = {real and complex polynomial mappings; bifurcation locus; Jacobian problem; Newton polyhedron; regularity at infinity},
language = {eng},
number = {5},
pages = {1807-1822},
publisher = {Association des Annales de l’institut Fourier},
title = {Invertible polynomial mappings via Newton non-degeneracy},
url = {http://eudml.org/doc/275622},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Chen, Ying
AU - Dias, Luis Renato G.
AU - Takeuchi, Kiyoshi
AU - Tibăr, Mihai
TI - Invertible polynomial mappings via Newton non-degeneracy
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 1807
EP - 1822
AB - We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.
LA - eng
KW - real and complex polynomial mappings; bifurcation locus; Jacobian problem; Newton polyhedron; regularity at infinity
UR - http://eudml.org/doc/275622
ER -
References
top- Andrzej Białynicki-Birula, Maxwell Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203 Zbl0107.14602MR140516
- Carles Bivià-Ausina, Injectivity of real polynomial maps and Łojasiewicz exponents at infinity, Math. Z. 257 (2007), 745-767 Zbl1183.14076MR2342551
- S. A. Broughton, On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981) 40 (1983), 167-178, Amer. Math. Soc., Providence, RI Zbl0526.14010MR713056
- S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217-241 Zbl0658.32005MR936081
- Ying Chen, L. R. G. Dias, M. Tibăr, On Newton non-degeneracy of polynomial mappings
- Ying Chen, Mihai Tibăr, Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett. 19 (2012), 59-79 Zbl1274.14006MR2923176
- Sławomir Cynk, Kamil Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math. 56 (1991), 29-35 Zbl0761.14005MR1145567
- L. R. G. Dias, M. A. S. Ruas, M. Tibăr, Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol. 5 (2012), 323-340 Zbl1248.14014MR2928079
- Alan H. Durfee, Five definitions of critical point at infinity, Singularities (Oberwolfach, 1996) 162 (1998), 345-360, Birkhäuser, Basel Zbl0919.32021MR1652481
- Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, 190 (2000), Birkhäuser Verlag, Basel Zbl0962.14037
- Alexander Esterov, Kiyoshi Takeuchi, Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not. IMRN (2012), 3567-3613 Zbl1250.32025MR2959042
- Terence Gaffney, Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compositio Math. 119 (1999), 157-167 Zbl0945.32013MR1723126
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) Zbl0135.39701MR219538
- H. V. Hà, D. T. Lê, Sur la topologie des polynômes complexes, Acta Math. Vietnam 9 (1984), 21-32 Zbl0597.32005
- Zbigniew Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35 Zbl0946.14039MR1717542
- Zbigniew Jelonek, On asymptotic critical values and the Rabier theorem, Geometric singularity theory 65 (2004), 125-133, Polish Acad. Sci., Warsaw Zbl1160.58311MR2104342
- K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Differential Geom. 56 (2000), 67-92 Zbl1067.58031MR1863021
- A. Kushnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31 Zbl0328.32007
- Yutaka Matsui, Kiyoshi Takeuchi, Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z. 268 (2011), 409-439 Zbl1264.14005MR2805442
- András Némethi, Alexandru Zaharia, On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci. 26 (1990), 681-689 Zbl0736.32024MR1081511
- András Némethi, Alexandru Zaharia, Milnor fibration at infinity, Indag. Math. (N.S.) 3 (1992), 323-335 Zbl0806.57021MR1186741
- T. T. Nguyen, Bifurcation set, -tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J. 36 (2013), 77-90 Zbl1266.32036MR3043400
- Mutsuo Oka, Non-degenerate complete intersection singularity, (1997), Hermann, Paris Zbl0930.14034MR1483897
- Mutsuo Oka, Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J. 31 (2008), 163-182 Zbl1149.14031MR2435890
- Mutsuo Oka, Non-degenerate mixed functions, Kodai Math. J. 33 (2010), 1-62 Zbl1195.14061MR2732230
- Adam Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384 Zbl0840.32007MR1353280
- Sergey Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994), 1-4 Zbl0874.26008MR1292168
- Patrick J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. (2) 146 (1997), 647-691 Zbl0919.58003MR1491449
- Dirk Siersma, Mihai Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. J. 80 (1995), 771-783 Zbl0871.32024MR1370115
- Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace , J. Math. Soc. Japan 26 (1974), 241-257 Zbl0276.14001MR338423
- Mihai Tibăr, Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) 263 (1999), xx, 249-264, Cambridge Univ. Press, Cambridge Zbl0930.58005MR1709356
- Mihai Tibăr, Polynomials and vanishing cycles, 170 (2007), Cambridge University Press, Cambridge Zbl1126.32026MR2360234
- Mihai Tibăr, Alexandru Zaharia, Asymptotic behaviour of families of real curves, Manuscripta Math. 99 (1999), 383-393 Zbl0965.14012MR1702581
- Jean-Louis Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312 Zbl0333.32010MR481096
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.