Invertible polynomial mappings via Newton non-degeneracy

Ying Chen[1]; Luis Renato G. Dias[1]; Kiyoshi Takeuchi[2]; Mihai Tibăr[3]

  • [1] Universidade de São Paulo ICMC Av. Trabalhador São-Carlense, 400 CP Box 668, 13560-970 São Carlos São Paulo (Brazil)
  • [2] University of Tsukuba Institute of Mathematics 1-1-1, Tennodai, Tsukuba Ibaraki, 305-8571 (Japon)
  • [3] Université Lille 1 Mathématiques, Laboratoire Paul Painlevé 59655 Villeneuve d’Ascq (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 1807-1822
  • ISSN: 0373-0956

Abstract

top
We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.

How to cite

top

Chen, Ying, et al. "Invertible polynomial mappings via Newton non-degeneracy." Annales de l’institut Fourier 64.5 (2014): 1807-1822. <http://eudml.org/doc/275622>.

@article{Chen2014,
abstract = {We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.},
affiliation = {Universidade de São Paulo ICMC Av. Trabalhador São-Carlense, 400 CP Box 668, 13560-970 São Carlos São Paulo (Brazil); Universidade de São Paulo ICMC Av. Trabalhador São-Carlense, 400 CP Box 668, 13560-970 São Carlos São Paulo (Brazil); University of Tsukuba Institute of Mathematics 1-1-1, Tennodai, Tsukuba Ibaraki, 305-8571 (Japon); Université Lille 1 Mathématiques, Laboratoire Paul Painlevé 59655 Villeneuve d’Ascq (France)},
author = {Chen, Ying, Dias, Luis Renato G., Takeuchi, Kiyoshi, Tibăr, Mihai},
journal = {Annales de l’institut Fourier},
keywords = {real and complex polynomial mappings; bifurcation locus; Jacobian problem; Newton polyhedron; regularity at infinity},
language = {eng},
number = {5},
pages = {1807-1822},
publisher = {Association des Annales de l’institut Fourier},
title = {Invertible polynomial mappings via Newton non-degeneracy},
url = {http://eudml.org/doc/275622},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Chen, Ying
AU - Dias, Luis Renato G.
AU - Takeuchi, Kiyoshi
AU - Tibăr, Mihai
TI - Invertible polynomial mappings via Newton non-degeneracy
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 1807
EP - 1822
AB - We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.
LA - eng
KW - real and complex polynomial mappings; bifurcation locus; Jacobian problem; Newton polyhedron; regularity at infinity
UR - http://eudml.org/doc/275622
ER -

References

top
  1. Andrzej Białynicki-Birula, Maxwell Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203 Zbl0107.14602MR140516
  2. Carles Bivià-Ausina, Injectivity of real polynomial maps and Łojasiewicz exponents at infinity, Math. Z. 257 (2007), 745-767 Zbl1183.14076MR2342551
  3. S. A. Broughton, On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981) 40 (1983), 167-178, Amer. Math. Soc., Providence, RI Zbl0526.14010MR713056
  4. S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217-241 Zbl0658.32005MR936081
  5. Ying Chen, L. R. G. Dias, M. Tibăr, On Newton non-degeneracy of polynomial mappings 
  6. Ying Chen, Mihai Tibăr, Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett. 19 (2012), 59-79 Zbl1274.14006MR2923176
  7. Sławomir Cynk, Kamil Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math. 56 (1991), 29-35 Zbl0761.14005MR1145567
  8. L. R. G. Dias, M. A. S. Ruas, M. Tibăr, Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol. 5 (2012), 323-340 Zbl1248.14014MR2928079
  9. Alan H. Durfee, Five definitions of critical point at infinity, Singularities (Oberwolfach, 1996) 162 (1998), 345-360, Birkhäuser, Basel Zbl0919.32021MR1652481
  10. Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, 190 (2000), Birkhäuser Verlag, Basel Zbl0962.14037
  11. Alexander Esterov, Kiyoshi Takeuchi, Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not. IMRN (2012), 3567-3613 Zbl1250.32025MR2959042
  12. Terence Gaffney, Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compositio Math. 119 (1999), 157-167 Zbl0945.32013MR1723126
  13. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) Zbl0135.39701MR219538
  14. H. V. Hà, D. T. Lê, Sur la topologie des polynômes complexes, Acta Math. Vietnam 9 (1984), 21-32 Zbl0597.32005
  15. Zbigniew Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35 Zbl0946.14039MR1717542
  16. Zbigniew Jelonek, On asymptotic critical values and the Rabier theorem, Geometric singularity theory 65 (2004), 125-133, Polish Acad. Sci., Warsaw Zbl1160.58311MR2104342
  17. K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Differential Geom. 56 (2000), 67-92 Zbl1067.58031MR1863021
  18. A. Kushnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31 Zbl0328.32007
  19. Yutaka Matsui, Kiyoshi Takeuchi, Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z. 268 (2011), 409-439 Zbl1264.14005MR2805442
  20. András Némethi, Alexandru Zaharia, On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci. 26 (1990), 681-689 Zbl0736.32024MR1081511
  21. András Némethi, Alexandru Zaharia, Milnor fibration at infinity, Indag. Math. (N.S.) 3 (1992), 323-335 Zbl0806.57021MR1186741
  22. T. T. Nguyen, Bifurcation set, M -tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J. 36 (2013), 77-90 Zbl1266.32036MR3043400
  23. Mutsuo Oka, Non-degenerate complete intersection singularity, (1997), Hermann, Paris Zbl0930.14034MR1483897
  24. Mutsuo Oka, Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J. 31 (2008), 163-182 Zbl1149.14031MR2435890
  25. Mutsuo Oka, Non-degenerate mixed functions, Kodai Math. J. 33 (2010), 1-62 Zbl1195.14061MR2732230
  26. Adam Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384 Zbl0840.32007MR1353280
  27. Sergey Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994), 1-4 Zbl0874.26008MR1292168
  28. Patrick J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. (2) 146 (1997), 647-691 Zbl0919.58003MR1491449
  29. Dirk Siersma, Mihai Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. J. 80 (1995), 771-783 Zbl0871.32024MR1370115
  30. Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace C 2 , J. Math. Soc. Japan 26 (1974), 241-257 Zbl0276.14001MR338423
  31. Mihai Tibăr, Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) 263 (1999), xx, 249-264, Cambridge Univ. Press, Cambridge Zbl0930.58005MR1709356
  32. Mihai Tibăr, Polynomials and vanishing cycles, 170 (2007), Cambridge University Press, Cambridge Zbl1126.32026MR2360234
  33. Mihai Tibăr, Alexandru Zaharia, Asymptotic behaviour of families of real curves, Manuscripta Math. 99 (1999), 383-393 Zbl0965.14012MR1702581
  34. Jean-Louis Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312 Zbl0333.32010MR481096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.