Invariant harmonic unit vector fields on the oscillator groups
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 907-924
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXu, Na, and Tan, Ju. "Invariant harmonic unit vector fields on the oscillator groups." Czechoslovak Mathematical Journal 69.4 (2019): 907-924. <http://eudml.org/doc/294707>.
@article{Xu2019,
abstract = {We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group $G_1(1)$.},
author = {Xu, Na, Tan, Ju},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic vector field; harmonic map; oscillator group},
language = {eng},
number = {4},
pages = {907-924},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Invariant harmonic unit vector fields on the oscillator groups},
url = {http://eudml.org/doc/294707},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Xu, Na
AU - Tan, Ju
TI - Invariant harmonic unit vector fields on the oscillator groups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 907
EP - 924
AB - We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group $G_1(1)$.
LA - eng
KW - harmonic vector field; harmonic map; oscillator group
UR - http://eudml.org/doc/294707
ER -
References
top- Boeckx, E., Vanhecke, L., 10.1016/s0926-2245(00)00021-8, Differ. Geom. Appl. 13 (2000), 77-93. (2000) Zbl0973.53053MR1775222DOI10.1016/s0926-2245(00)00021-8
- Boeckx, E., Vanhecke, L., 10.1023/a:1010687231629, Acta Math. Hung. 90 (2001), 317-331. (2001) Zbl1012.53040MR1910716DOI10.1023/a:1010687231629
- Boothby, W. M., 10.1016/S0079-8169(08)61173-3, Pure and Applied Mathematics 120, Academic Press, Orlando (1986). (1986) Zbl0596.53001MR0861409DOI10.1016/S0079-8169(08)61173-3
- Boucetta, M., Medina, A., 10.1016/j.geomphys.2011.07.004, J. Geom. Phys. 61 (2011), 2309-2320. (2011) Zbl1226.53070MR2838508DOI10.1016/j.geomphys.2011.07.004
- Calvaruso, G., 10.2478/s11533-011-0109-9, Cent. Eur. J. Math. 10 (2012), 411-425. (2012) Zbl1246.53083MR2886549DOI10.2478/s11533-011-0109-9
- Díaz, R. D., Gadea, P. M., Oubiña, J. A., 10.1063/1.532902, J. Math. Phys. 40 (1999), 3490-3498. (1999) Zbl0978.53095MR1696968DOI10.1063/1.532902
- Gadea, P. M., Oubiña, J. A., 10.1007/s000130050403, Arch. Math. 73 (1999), 311-320. (1999) Zbl0954.53029MR1710084DOI10.1007/s000130050403
- Gil-Medrano, O., 10.1016/s0926-2245(01)00053-5, Differ. Geom. Appl. 15 (2001), 137-152. (2001) Zbl1066.53068MR1857559DOI10.1016/s0926-2245(01)00053-5
- González-Dávila, J. C., Vanhecke, L., 10.1023/a:1006788819180, Ann. Global Anal. Geom. 18 (2000), 385-404. (2000) Zbl1005.53026MR1795104DOI10.1023/a:1006788819180
- González-Dávila, J. C., Vanhecke, L., 10.1007/s00022-001-8570-4, J. Geom. 72 (2001), 65-76. (2001) Zbl1005.53039MR1891456DOI10.1007/s00022-001-8570-4
- González-Dávila, J. C., Vanhecke, L., 10.1016/s0926-2245(02)00060-8, Differ. Geom. Appl. 16 (2002), 225-244. (2002) Zbl1035.53089MR1900746DOI10.1016/s0926-2245(02)00060-8
- Levichev, A. V., 10.1007/bf00969391, Sib. Math. J. 27 (1986), 237-245 English. Russian original translation from Sib. Mat. Zh. 27 1986 117-126. (1986) Zbl0602.53057MR0890307DOI10.1007/bf00969391
- Medina, A., 10.2748/tmj/1178228586, Tohoku Math. J. 2 37 French (1985), 405-421. (1985) Zbl0583.53053MR0814072DOI10.2748/tmj/1178228586
- Milnor, J. W., 10.1016/s0001-8708(76)80002-3, Adv. Math. 21 (1976), 293-329. (1976) Zbl0341.53030MR0425012DOI10.1016/s0001-8708(76)80002-3
- Onda, K., 10.1007/s10747-014-0426-0, Acta Math. Hung. 144 (2014), 247-265. (2014) Zbl1324.53063MR3267185DOI10.1007/s10747-014-0426-0
- Tsukada, K., Vanhecke, L., 10.1215/ijm/1258138349, Ill. J. Math. 45 (2001), 441-451. (2001) Zbl0997.53040MR1878613DOI10.1215/ijm/1258138349
- Vanhecke, L., González-Dávila, J. C., Invariant harmonic unit vector fields on Lie groups, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 377-403. (2002) Zbl1097.53033MR1911197
- Wiegmink, G., 10.1007/bf01460993, Math. Ann. 303 (1995), 325-344. (1995) Zbl0834.53034MR1348803DOI10.1007/bf01460993
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.