Invariant harmonic unit vector fields on the oscillator groups

Na Xu; Ju Tan

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 907-924
  • ISSN: 0011-4642

Abstract

top
We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group G 1 ( 1 ) .

How to cite

top

Xu, Na, and Tan, Ju. "Invariant harmonic unit vector fields on the oscillator groups." Czechoslovak Mathematical Journal 69.4 (2019): 907-924. <http://eudml.org/doc/294707>.

@article{Xu2019,
abstract = {We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group $G_1(1)$.},
author = {Xu, Na, Tan, Ju},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic vector field; harmonic map; oscillator group},
language = {eng},
number = {4},
pages = {907-924},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Invariant harmonic unit vector fields on the oscillator groups},
url = {http://eudml.org/doc/294707},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Xu, Na
AU - Tan, Ju
TI - Invariant harmonic unit vector fields on the oscillator groups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 907
EP - 924
AB - We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group $G_1(1)$.
LA - eng
KW - harmonic vector field; harmonic map; oscillator group
UR - http://eudml.org/doc/294707
ER -

References

top
  1. Boeckx, E., Vanhecke, L., 10.1016/s0926-2245(00)00021-8, Differ. Geom. Appl. 13 (2000), 77-93. (2000) Zbl0973.53053MR1775222DOI10.1016/s0926-2245(00)00021-8
  2. Boeckx, E., Vanhecke, L., 10.1023/a:1010687231629, Acta Math. Hung. 90 (2001), 317-331. (2001) Zbl1012.53040MR1910716DOI10.1023/a:1010687231629
  3. Boothby, W. M., 10.1016/S0079-8169(08)61173-3, Pure and Applied Mathematics 120, Academic Press, Orlando (1986). (1986) Zbl0596.53001MR0861409DOI10.1016/S0079-8169(08)61173-3
  4. Boucetta, M., Medina, A., 10.1016/j.geomphys.2011.07.004, J. Geom. Phys. 61 (2011), 2309-2320. (2011) Zbl1226.53070MR2838508DOI10.1016/j.geomphys.2011.07.004
  5. Calvaruso, G., 10.2478/s11533-011-0109-9, Cent. Eur. J. Math. 10 (2012), 411-425. (2012) Zbl1246.53083MR2886549DOI10.2478/s11533-011-0109-9
  6. Díaz, R. D., Gadea, P. M., Oubiña, J. A., 10.1063/1.532902, J. Math. Phys. 40 (1999), 3490-3498. (1999) Zbl0978.53095MR1696968DOI10.1063/1.532902
  7. Gadea, P. M., Oubiña, J. A., 10.1007/s000130050403, Arch. Math. 73 (1999), 311-320. (1999) Zbl0954.53029MR1710084DOI10.1007/s000130050403
  8. Gil-Medrano, O., 10.1016/s0926-2245(01)00053-5, Differ. Geom. Appl. 15 (2001), 137-152. (2001) Zbl1066.53068MR1857559DOI10.1016/s0926-2245(01)00053-5
  9. González-Dávila, J. C., Vanhecke, L., 10.1023/a:1006788819180, Ann. Global Anal. Geom. 18 (2000), 385-404. (2000) Zbl1005.53026MR1795104DOI10.1023/a:1006788819180
  10. González-Dávila, J. C., Vanhecke, L., 10.1007/s00022-001-8570-4, J. Geom. 72 (2001), 65-76. (2001) Zbl1005.53039MR1891456DOI10.1007/s00022-001-8570-4
  11. González-Dávila, J. C., Vanhecke, L., 10.1016/s0926-2245(02)00060-8, Differ. Geom. Appl. 16 (2002), 225-244. (2002) Zbl1035.53089MR1900746DOI10.1016/s0926-2245(02)00060-8
  12. Levichev, A. V., 10.1007/bf00969391, Sib. Math. J. 27 (1986), 237-245 English. Russian original translation from Sib. Mat. Zh. 27 1986 117-126. (1986) Zbl0602.53057MR0890307DOI10.1007/bf00969391
  13. Medina, A., 10.2748/tmj/1178228586, Tohoku Math. J. 2 37 French (1985), 405-421. (1985) Zbl0583.53053MR0814072DOI10.2748/tmj/1178228586
  14. Milnor, J. W., 10.1016/s0001-8708(76)80002-3, Adv. Math. 21 (1976), 293-329. (1976) Zbl0341.53030MR0425012DOI10.1016/s0001-8708(76)80002-3
  15. Onda, K., 10.1007/s10747-014-0426-0, Acta Math. Hung. 144 (2014), 247-265. (2014) Zbl1324.53063MR3267185DOI10.1007/s10747-014-0426-0
  16. Tsukada, K., Vanhecke, L., 10.1215/ijm/1258138349, Ill. J. Math. 45 (2001), 441-451. (2001) Zbl0997.53040MR1878613DOI10.1215/ijm/1258138349
  17. Vanhecke, L., González-Dávila, J. C., Invariant harmonic unit vector fields on Lie groups, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 377-403. (2002) Zbl1097.53033MR1911197
  18. Wiegmink, G., 10.1007/bf01460993, Math. Ann. 303 (1995), 325-344. (1995) Zbl0834.53034MR1348803DOI10.1007/bf01460993

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.