Invariant harmonic unit vector fields on Lie groups
J. C. González-Dávila; L. Vanhecke
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 2, page 377-403
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGonzález-Dávila, J. C., and Vanhecke, L.. "Invariant harmonic unit vector fields on Lie groups." Bollettino dell'Unione Matematica Italiana 5-B.2 (2002): 377-403. <http://eudml.org/doc/194577>.
@article{González2002,
abstract = {We provide a new characterization of invariant harmonic unit vector fields on Lie groups endowed with a left-invariant metric. We use it to derive existence results and to construct new examples on Lie groups equipped with a bi-invariant metric, on three-dimensional Lie groups, on generalized Heisenberg groups, on Damek-Ricci spaces and on particular semi-direct products. In several cases a complete list of such vector fields is given. Furthermore, for a lot of the examples we determine associated harmonic maps from the considered group into its unit tangent bundle equipped with the associated Sasaki metric.},
author = {González-Dávila, J. C., Vanhecke, L.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {unimodular; non-unimodular Lie groups; Sasaki metric},
language = {eng},
month = {6},
number = {2},
pages = {377-403},
publisher = {Unione Matematica Italiana},
title = {Invariant harmonic unit vector fields on Lie groups},
url = {http://eudml.org/doc/194577},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - González-Dávila, J. C.
AU - Vanhecke, L.
TI - Invariant harmonic unit vector fields on Lie groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/6//
PB - Unione Matematica Italiana
VL - 5-B
IS - 2
SP - 377
EP - 403
AB - We provide a new characterization of invariant harmonic unit vector fields on Lie groups endowed with a left-invariant metric. We use it to derive existence results and to construct new examples on Lie groups equipped with a bi-invariant metric, on three-dimensional Lie groups, on generalized Heisenberg groups, on Damek-Ricci spaces and on particular semi-direct products. In several cases a complete list of such vector fields is given. Furthermore, for a lot of the examples we determine associated harmonic maps from the considered group into its unit tangent bundle equipped with the associated Sasaki metric.
LA - eng
KW - unimodular; non-unimodular Lie groups; Sasaki metric
UR - http://eudml.org/doc/194577
ER -
References
top- ABBENA, E.- GARBIERO, S.- VANHECKE, L., Einstein-like metrics on three-dimensional Riemannian homogeneous manifolds, Simon Stevin, 66 (1992), 173-182. Zbl0786.53028MR1198875
- BERNDT, J.- TRICERRI, F.- VANHECKE, L., Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math., 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995. Zbl0818.53067MR1340192
- BOECKX, E.- VANHECKE, L., Harmonic and minimal radial vector fields, Acta Math. Hungar., to appear. Zbl1012.53040MR1910716
- BOECKX, E.- VANHECKE, L., Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl., 13 (2000), 77-93. Zbl0973.53053MR1775222
- GIL-MEDRANO, O., Relationship between volume and energy of unit vector fields, Differential Geom. Appl., to appear. Zbl1066.53068MR1857559
- GIL-MEDRANO, O.- LLINARES-FUSTER, E., Minimal unit vector fields, preprint, 1998. Zbl1006.53053MR1878928
- GONZÁLEZ-DÁVILA, J. C.- VANHECKE, L., Examples of minimal unit vector fields, Global Anal. Geom., 18 (2000), 385-404. Zbl1005.53026MR1795104
- GONZÁLEZ-DÁVILA, J. C.- VANHECKE, L., Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds, J. Geom., to appear. Zbl1005.53039MR1891456
- HARAGUCHI, Y., Sur une généralisation des structures de contact, Thèse, Univ. du Haute Alsace, Mulhouse, 1981.
- KAPLAN, A., Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., 258 (1980), 147-153. Zbl0393.35015MR554324
- MILNOR, J., Curvature of left invariant metrics on Lie groups, Adv. in Math., 21 (1976), 293-329. Zbl0341.53030MR425012
- O'NEILL, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983. Zbl0531.53051MR719023
- TSUKADA, K.- VANHECKE, L., Invariant minimal unit vector fields on Lie groups, Period. Math. Hungar., to appear. Zbl0973.53045MR1805310
- TSUKADA, K.- VANHECKE, L., Minimality and harmonicity for Hopf vector fields, Illinois J. Math., to appear. Zbl0997.53040MR1878613
- WIEGMINK, G., Total bending of vector fields on Riemannian manifolds, Math. Ann., 303 (1995), 325-344. Zbl0834.53034MR1348803
- WOOD, C. M., On the energy of a unit vector field, Geom. Dedicata, 64 (1997), 319-330. Zbl0878.58017MR1440565
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.