Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface

Lubomír Klimeš; Pavel Popela; Tomáš Mauder; Josef Štětina; Pavel Charvát

Kybernetika (2017)

  • Volume: 53, Issue: 6, page 1047-1070
  • ISSN: 0023-5954

Abstract

top
The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem which is considered by means of the two-stage stochastic PDE-constrained program with a random failure. The numerical heat transfer model for the steel production was derived with the use of the control volume method and the phase changes were taken into account with the use of the effective heat capacity. Numerical experiments demonstrate that parallel computing facility has enabled a significant reduction of computational time. The quality of the stochastic solution was evaluated and discussed. The developed system seems computationally effective and sufficiently robust which makes it applicable in other applications as well.

How to cite

top

Klimeš, Lubomír, et al. "Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface." Kybernetika 53.6 (2017): 1047-1070. <http://eudml.org/doc/294729>.

@article{Klimeš2017,
abstract = {The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem which is considered by means of the two-stage stochastic PDE-constrained program with a random failure. The numerical heat transfer model for the steel production was derived with the use of the control volume method and the phase changes were taken into account with the use of the effective heat capacity. Numerical experiments demonstrate that parallel computing facility has enabled a significant reduction of computational time. The quality of the stochastic solution was evaluated and discussed. The developed system seems computationally effective and sufficiently robust which makes it applicable in other applications as well.},
author = {Klimeš, Lubomír, Popela, Pavel, Mauder, Tomáš, Štětina, Josef, Charvát, Pavel},
journal = {Kybernetika},
keywords = {stochastic programming; progressive hedging; parallel computing; steel production; heat transfer; phase change},
language = {eng},
number = {6},
pages = {1047-1070},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface},
url = {http://eudml.org/doc/294729},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Klimeš, Lubomír
AU - Popela, Pavel
AU - Mauder, Tomáš
AU - Štětina, Josef
AU - Charvát, Pavel
TI - Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 6
SP - 1047
EP - 1070
AB - The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem which is considered by means of the two-stage stochastic PDE-constrained program with a random failure. The numerical heat transfer model for the steel production was derived with the use of the control volume method and the phase changes were taken into account with the use of the effective heat capacity. Numerical experiments demonstrate that parallel computing facility has enabled a significant reduction of computational time. The quality of the stochastic solution was evaluated and discussed. The developed system seems computationally effective and sufficiently robust which makes it applicable in other applications as well.
LA - eng
KW - stochastic programming; progressive hedging; parallel computing; steel production; heat transfer; phase change
UR - http://eudml.org/doc/294729
ER -

References

top
  1. Alquarashi, A., Etemadi, A. H., Khodaei, A., 10.1016/j.epsr.2016.08.009, Electr. Power Syst. Res. 141 (2016), 233-245. DOI10.1016/j.epsr.2016.08.009
  2. Barttfeld, M., Alleborn, N., Durst, F., 10.1016/j.compchemeng.2005.10.016, Comput. Chem. Engrg. 30 (2006), 467-489. DOI10.1016/j.compchemeng.2005.10.016
  3. Birge, J. R., Louveaux, F., Introduction to Stochastic Programming., Springer, New York 2011. MR2807730
  4. Brimacombe, J. K., Sorimachi, K., 10.1007/bf02696937, Metal. Trans. B. Proc. Metal. 8 (1977), 489-505. DOI10.1007/bf02696937
  5. Carvalho, E. P., Martínez, J., Martínez, J. M., Pisnitchenko, F., 10.1016/j.matcom.2010.07.020, Math. Comput. Simul. 114 (2015), 14-24. MR3357814DOI10.1016/j.matcom.2010.07.020
  6. Carrasco, M., Ivorra, B., Ramos, A. M., 10.1016/j.cma.2015.02.003, Comput. Meth. Appl. Mech. Engrg. 289 (2015), 131-154. MR3327148DOI10.1016/j.cma.2015.02.003
  7. Carpentier, P. L., Gendreau, M., Bastin, F., 10.1002/wrcr.20254, Water Resour. Res. 49 (2013), 2812-2827. DOI10.1002/wrcr.20254
  8. Cheng, Y. M., Li, D. Z., Li, N., Lee, Y. Y., Au, S. K., 10.1017/jmech.2013.26, J. Mech. 29 (2013), 507-516. DOI10.1017/jmech.2013.26
  9. Drud, A., 10.1007/bf02591747, Math. Program. 31 (1985), 153-191. MR0777289DOI10.1007/bf02591747
  10. Gade, D., Ryan, G. Hackebeil. S. M., Watson, J.-P., Wets, R. J.-B., Woodruff, D. L., 10.1007/s10107-016-1000-z, Math. Prog. 157 (2016), 47-67. MR3492067DOI10.1007/s10107-016-1000-z
  11. Gonçalves, R. E. C., Finardi, E. C., Silva, E. L. da, 10.1016/j.epsr.2011.09.006, Electr. Power Syst. Res. 83 (2012), 19-27. DOI10.1016/j.epsr.2011.09.006
  12. Gul, S., Denton, B. T., Fowler, J. W., 10.1287/ijoc.2015.0658, INFORMS J. Comput. 27 (2015), 755-772. MR3432659DOI10.1287/ijoc.2015.0658
  13. Ikeda, S., Ooka, R., 10.1016/j.enbuild.2016.04.080, Energ. Build. 125 (2016), 75-85. DOI10.1016/j.enbuild.2016.04.080
  14. Bergman, T. L., Lavine, A. S., Incropera, F. P., Dewitt, D. P., Fundamentals of Heat and Mass Transfer. Seventh edition., Wiley, New York 2011. 
  15. Klimeš, L., Stochastic Programming Algorithms., Master Thesis. Brno University of Technology, 2010. 
  16. Klimeš, L., Popela, P., An implementation of progressive hedging algorithm for engineering problem., In: Proc. 16th International Conference on Soft Computing MENDEL, Brno 2010, pp. 459-464. 
  17. Klimeš, L., Popela, P., Štětina, J., Decomposition approach applied to stochastic optimization of continuous steel casting., In: Proc. 17th International Conference on Soft Computing MENDEL, Brno 2011, pp. 314-319. 
  18. Klimeš, L., Mauder, T., Štětina, J., Stochastic approach and optimal control of continuous steel casting process by using progressive hedging algorithm., In: Proc. 20th International Conference on Materials and Metallurgy METAL, Brno 2011, pp. 146-151. 
  19. Marca, M. La, Armbruster, D., Herty, M., Ringhofer, C., 10.1109/tac.2010.2046925, IEEE Trans. Automat. Control 55 (2010), 2511-2526. MR2721893DOI10.1109/tac.2010.2046925
  20. Lamghari, A., Dimitrakopoulos, R., 10.1016/j.ejor.2016.03.007, Eur. J. Oper. Res. 253 (2016), 843-855. MR3490823DOI10.1016/j.ejor.2016.03.007
  21. Liu, J., Liu, C., 10.1080/10426914.2015.1004696, Mater. Manuf. Process. 30 (2015), 563-568. DOI10.1080/10426914.2015.1004696
  22. Mills, K. C., Ramirez-Lopez, P., Lee, P. D., Santillana, B., Thomas, B. G., Morales, R., 10.1179/0301923313z.000000000255, Ironmak. Steelmak. 41 (2014), 242-249. DOI10.1179/0301923313z.000000000255
  23. Mauder, T., Kavička, F., Štětina, J., Franěk, Z., Masarik, M., A mathematical & stochatic modelling of the concasting of steel slabs., In: Proc. International Conference on Materials and Metallurgy, Hradec nad Moravicí 2009, pp. 41-48. 
  24. Mauder, T., Novotný, J., Two mathematical approaches for optimal control of the continuous slab casting process., In: Proc. 16th International Conference on Soft Computing MENDEL, Brno 2010, pp. 41-48. 
  25. Rockafellar, R. T., Wets, R. J.-B., 10.1287/moor.16.1.119, Math. Oper. Res. 16 (1991), 119-147. MR1106793DOI10.1287/moor.16.1.119
  26. Ruszczynski, A., Shapiro, A., 10.1016/s0927-0507(03)10001-1, Handbooks in Operations Research and Management Science, Volume 10: Stochastic Programming, Elsevier, Amsterdam 2003. MR2051791DOI10.1016/s0927-0507(03)10001-1
  27. Shioura, A., Shakhlevich, N. V., Strusevich, V. A., 10.1287/ijoc.2015.0660, INFORMS J. Comput. 28 (2016), 148-161. MR3461551DOI10.1287/ijoc.2015.0660
  28. Stefanescu, D. M., Science and Engineering of Casting Solidification. Second edition., Springer, New York 2009. 
  29. Štětina, J., Klimeš, L., Mauder, T., Minimization of surface defects by increasing the surface temperature during the straightening of a continuously cast slab., Mater. Tehnol. 47 (2013), 311-316. 
  30. Ugail, H., Wilson, M. J., 10.1016/s0045-7949(03)00321-3, Comput. Struct. 81 (2003), 2601-2609. DOI10.1016/s0045-7949(03)00321-3
  31. Varaiya, P., Wets, R. J.-B., 10.1007/978-3-642-82450-0_11, In: Proc. 13th International Symposium on Mathematical Programming, Tokio 1989, pp. 309-331. MR1114320DOI10.1007/978-3-642-82450-0_11
  32. Veliz, F. B., Watson, J. P., Weintraub, A., Wets, R. J.-B., Woodruff, D. L., 10.1007/s10479-014-1608-4, Ann. Oper. Res. 232 (2015), 259-274. MR3383965DOI10.1007/s10479-014-1608-4
  33. Waanders, B. G. V., Carnes, B. R., 10.1007/s00466-010-0530-0, Comput. Mech. 47 (2011), 49-63. MR2756370DOI10.1007/s00466-010-0530-0
  34. Wets, R. J.-B., 10.1007/978-3-642-83724-1_4, In: Algorithms and Model Formulations in Mathematical Programming (S. W. Wallace, ed.), Springer, Berlin 1989. MR0996646DOI10.1007/978-3-642-83724-1_4
  35. Yang, Z., Qui, H. L., Luo, X. W., Shen, D., 10.2507/ijsimm14(4)co17, Int. J. Simul. Model. 14 (2015), 710-718. DOI10.2507/ijsimm14(4)co17
  36. Yang, J., Ji, Z. P., Liu, S., Jia, Q., 10.1109/icarm.2016.7606933, In: Proc. International Conference on Advanced Robotics and Mechatronics (ICARM), Macau 2016, pp. 283-287. DOI10.1109/icarm.2016.7606933
  37. Žampachová, E., Popela, P., Mrázek, M., Optimum beam design via stochastic programming., Kybernetika 46 (2010), 571-582. MR2676092
  38. Zarandi, M. H. F., Dorry, F., Moghadam, F. S., 10.1109/norbert.2014.6893896, In: Proc. IEEE Conference on Norbert Wiener in the 21st Century (21CW), Boston 2014. DOI10.1109/norbert.2014.6893896

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.