Existence results for systems of conformable fractional differential equations
Bouharket Bendouma; Alberto Cabada; Ahmed Hammoudi
Archivum Mathematicum (2019)
- Volume: 055, Issue: 2, page 69-82
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBendouma, Bouharket, Cabada, Alberto, and Hammoudi, Ahmed. "Existence results for systems of conformable fractional differential equations." Archivum Mathematicum 055.2 (2019): 69-82. <http://eudml.org/doc/294730>.
@article{Bendouma2019,
abstract = {In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is $L^\{1\}_\{\alpha \}$-carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.},
author = {Bendouma, Bouharket, Cabada, Alberto, Hammoudi, Ahmed},
journal = {Archivum Mathematicum},
keywords = {conformable fractional calculus; conformable fractional differential equations; solution-tube; Schauder’s fixed-point theorem; fractional Sobolev’s spaces},
language = {eng},
number = {2},
pages = {69-82},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence results for systems of conformable fractional differential equations},
url = {http://eudml.org/doc/294730},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Bendouma, Bouharket
AU - Cabada, Alberto
AU - Hammoudi, Ahmed
TI - Existence results for systems of conformable fractional differential equations
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 69
EP - 82
AB - In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is $L^{1}_{\alpha }$-carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.
LA - eng
KW - conformable fractional calculus; conformable fractional differential equations; solution-tube; Schauder’s fixed-point theorem; fractional Sobolev’s spaces
UR - http://eudml.org/doc/294730
ER -
References
top- Abdeljawad, T., 10.1016/j.cam.2014.10.016, J. Comput. Appl. Math. 279 (2015), 57–66. (2015) MR3293309DOI10.1016/j.cam.2014.10.016
- Abdeljawad, T., AlHorani, M., Khalil, R., Conformable fractional semigroups of operators, J. Semigroup Theory Appl. 2015 (2015), 9 pages. (2015)
- Anderson, D.R., Avery, R.I., Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electronic J. Differential Equ. 2015 (29) (2015), 10 pages. (2015) MR3335759
- Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W., Three-point boundary value problems for conformable fractional differential equations, J. Function Spaces 2015 (2015), 6 pages. (2015) MR3326681
- Bayour, B., Torres, D.F.M., 10.1016/j.cam.2016.01.014, J. Comput. Appl. Math. 312 (2016), 127–133. (2016) MR3557866DOI10.1016/j.cam.2016.01.014
- Benchohra, M., Cabada, A., Seba, D., An existence result for nonlinear fractional differential equations on Banach spaces, Boundary Value Problem 2009 (2009), 11 pages. (2009) MR2525581
- Bendouma, B., Cabada, A., Hammoudi, A., Existence of solutions for conformable fractional problems with nonlinear functional boundary conditions, submitted.
- Benkhettou, N., Hassani, S., Torres, D.F.M., 10.1016/j.jksus.2015.05.003, J. King Saud Univ. Sci. 28 (1) (2016), 93–98. (2016) DOI10.1016/j.jksus.2015.05.003
- Cabada, A., Green’s Functions in the Theory of Ordinary Differential Equations, Springer, New York, 2014. (2014) MR3155625
- Cabada, A., Hamdi, Z., 10.1016/j.amc.2013.11.057, Appl. Appl. Math. Comput. 228 (2014), 251–257. (2014) MR3151912DOI10.1016/j.amc.2013.11.057
- Cabada, A., Hamdi, Z., 10.1515/gmj-2016-0086, Georgian Math. J. 24 (1) (2017), 41–53. (2017) MR3607239DOI10.1515/gmj-2016-0086
- Cabada, A., Wang, G., 10.1016/j.jmaa.2011.11.065, J. Math. Anal. Appl. 389 (1) (2012), 403–411. (2012) MR2876506DOI10.1016/j.jmaa.2011.11.065
- Chung, W.S., 10.1016/j.cam.2015.04.049, J. Comput. Appl. Math. 290 (2015), 150–158. (2015) MR3370399DOI10.1016/j.cam.2015.04.049
- Frigon, M., O’Regan, D., Existence results for initial value problems in Banach spaces, Differ. Equ. Dyn. Syst. 2 (1994), 41–48. (1994) MR1386037
- Frigon, M., O’Regan, D., 10.1016/S0893-9659(97)00057-8, Appl. Math. Lett. 10 (1997), 41–46. (1997) MR1458151DOI10.1016/S0893-9659(97)00057-8
- Gilbert, H., Existence theorems for first order equations on time scales with Carathédory functions, Adv. Difference Equ. 2010 (2010), 20 pages, Article ID 650827. (2010) MR2747083
- Gökdoǧan, A., Ünal, E., Çelik, E., Existence and uniqueness theorems for sequential linear conformable fractional differential equations, arXiv preprint, 2015. MR3527883
- Gözütok, N.Y., Gözütok, U., Multivariable conformable fractional calculus, math.CA 2017.
- Gulsen, T., Yilmaz, E., Goktas, S., Conformable fractional Dirac system on time scales, J. Inequ. Appl. 2017 (2017), 1–10. (2017) MR3669797
- Iyiola, O.S., Nwaeze, E.R., 10.18576/pfda/020204, Progr. Fract. Differ. Appl. 2 (2) (2016), 115–122. (2016) DOI10.18576/pfda/020204
- Katugampola, U.N., A new fractional derivative with classical properties, preprint, 2014. MR3298307
- Khaldi, R., Guezane-Lakoud, A., 10.18576/pfda/030407, Progr. Fract. Differ. Appl. 3 (4) (2017), 323–329. (2017) DOI10.18576/pfda/030407
- Khalil, R., Horani, M. Al, Yousef, A., Sababheh, M., 10.1016/j.cam.2014.01.002, J. Comput. Appl. Math. 264 (2014), 65–70. (2014) MR3164103DOI10.1016/j.cam.2014.01.002
- Kilbas, A., Srivastava, M.H., Trujillo, J.J., Theory and Application of Fractional Differential Equations, vol. 204, North Holland Mathematics Studies, 2006. (2006) MR2218073
- Magin, R.L., 10.1615/CritRevBiomedEng.v32.10, CR in Biomedical Engineering 32 (1) (2004), 1–104. (2004) DOI10.1615/CritRevBiomedEng.v32.10
- Mirandette, B., Résultats d’existence pour des systèmes d’équations différentielles du premier ordre avec tube-solution, Mémoire de matrise, Université de Montréal, 1996. (1996)
- Nwaeze, E.R., 10.18576/pfda/020406, Progr. Fract. Differ. Appl. 2 (4) (2016), 287–291. (2016) DOI10.18576/pfda/020406
- Ortigueira, M.D., Machado, J.A. Tenreiro, 10.1016/j.jcp.2014.07.019, J. Comput. Phys. 293 (2015), 4–13. (2015) MR3342452DOI10.1016/j.jcp.2014.07.019
- Pospisil, M., Skripkova, L.P., Sturm’s theorems for conformable fractional differential equations, Math. Commun. 21 (2016), 273–281. (2016) MR3517494
- Shi, A., Zhang, S., Upper and lower solutions method and a fractional differential equation boundary value problem, Progr. Fract. Differ. Appl. 30 (2009), 13 pages. (2009) MR2506151
- Shugui, K., Huiqing, C., Yaqing, Y., Ying, G., Existence and uniqueness of the solutions for the fractional initial value problem, Electr. J. Shanghai Normal University (Natural Sciences) 45 (3) (2016), 313–319. (2016)
- Wang, Y., Zhou, J., Li, Y., Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales, Adv. Math. Phys. 2016 (2016), 21 pages. (2016) MR3579208
- Yang, X.J., Baleanu, D., Machado, J.A.T., Application of the local fractional Fourier series to fractal signals, Discontinuity and complexity in nonlinear physical systems, Springer, Cham, 2014, pp. 63–89. (2014) MR3204525
- Zhang, S., Su, X., 10.1016/j.camwa.2011.03.008, Comput. Math. Appl. 62 (3) (2011), 1269–1274. (2011) MR2824713DOI10.1016/j.camwa.2011.03.008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.