Existence results for systems of conformable fractional differential equations

Bouharket Bendouma; Alberto Cabada; Ahmed Hammoudi

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 2, page 69-82
  • ISSN: 0044-8753

Abstract

top
In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is L α 1 -carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.

How to cite

top

Bendouma, Bouharket, Cabada, Alberto, and Hammoudi, Ahmed. "Existence results for systems of conformable fractional differential equations." Archivum Mathematicum 055.2 (2019): 69-82. <http://eudml.org/doc/294730>.

@article{Bendouma2019,
abstract = {In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is $L^\{1\}_\{\alpha \}$-carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.},
author = {Bendouma, Bouharket, Cabada, Alberto, Hammoudi, Ahmed},
journal = {Archivum Mathematicum},
keywords = {conformable fractional calculus; conformable fractional differential equations; solution-tube; Schauder’s fixed-point theorem; fractional Sobolev’s spaces},
language = {eng},
number = {2},
pages = {69-82},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence results for systems of conformable fractional differential equations},
url = {http://eudml.org/doc/294730},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Bendouma, Bouharket
AU - Cabada, Alberto
AU - Hammoudi, Ahmed
TI - Existence results for systems of conformable fractional differential equations
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 69
EP - 82
AB - In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is $L^{1}_{\alpha }$-carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.
LA - eng
KW - conformable fractional calculus; conformable fractional differential equations; solution-tube; Schauder’s fixed-point theorem; fractional Sobolev’s spaces
UR - http://eudml.org/doc/294730
ER -

References

top
  1. Abdeljawad, T., 10.1016/j.cam.2014.10.016, J. Comput. Appl. Math. 279 (2015), 57–66. (2015) MR3293309DOI10.1016/j.cam.2014.10.016
  2. Abdeljawad, T., AlHorani, M., Khalil, R., Conformable fractional semigroups of operators, J. Semigroup Theory Appl. 2015 (2015), 9 pages. (2015) 
  3. Anderson, D.R., Avery, R.I., Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electronic J. Differential Equ. 2015 (29) (2015), 10 pages. (2015) MR3335759
  4. Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W., Three-point boundary value problems for conformable fractional differential equations, J. Function Spaces 2015 (2015), 6 pages. (2015) MR3326681
  5. Bayour, B., Torres, D.F.M., 10.1016/j.cam.2016.01.014, J. Comput. Appl. Math. 312 (2016), 127–133. (2016) MR3557866DOI10.1016/j.cam.2016.01.014
  6. Benchohra, M., Cabada, A., Seba, D., An existence result for nonlinear fractional differential equations on Banach spaces, Boundary Value Problem 2009 (2009), 11 pages. (2009) MR2525581
  7. Bendouma, B., Cabada, A., Hammoudi, A., Existence of solutions for conformable fractional problems with nonlinear functional boundary conditions, submitted. 
  8. Benkhettou, N., Hassani, S., Torres, D.F.M., 10.1016/j.jksus.2015.05.003, J. King Saud Univ. Sci. 28 (1) (2016), 93–98. (2016) DOI10.1016/j.jksus.2015.05.003
  9. Cabada, A., Green’s Functions in the Theory of Ordinary Differential Equations, Springer, New York, 2014. (2014) MR3155625
  10. Cabada, A., Hamdi, Z., 10.1016/j.amc.2013.11.057, Appl. Appl. Math. Comput. 228 (2014), 251–257. (2014) MR3151912DOI10.1016/j.amc.2013.11.057
  11. Cabada, A., Hamdi, Z., 10.1515/gmj-2016-0086, Georgian Math. J. 24 (1) (2017), 41–53. (2017) MR3607239DOI10.1515/gmj-2016-0086
  12. Cabada, A., Wang, G., 10.1016/j.jmaa.2011.11.065, J. Math. Anal. Appl. 389 (1) (2012), 403–411. (2012) MR2876506DOI10.1016/j.jmaa.2011.11.065
  13. Chung, W.S., 10.1016/j.cam.2015.04.049, J. Comput. Appl. Math. 290 (2015), 150–158. (2015) MR3370399DOI10.1016/j.cam.2015.04.049
  14. Frigon, M., O’Regan, D., Existence results for initial value problems in Banach spaces, Differ. Equ. Dyn. Syst. 2 (1994), 41–48. (1994) MR1386037
  15. Frigon, M., O’Regan, D., 10.1016/S0893-9659(97)00057-8, Appl. Math. Lett. 10 (1997), 41–46. (1997) MR1458151DOI10.1016/S0893-9659(97)00057-8
  16. Gilbert, H., Existence theorems for first order equations on time scales with Δ - Carathédory functions, Adv. Difference Equ. 2010 (2010), 20 pages, Article ID 650827. (2010) MR2747083
  17. Gökdoǧan, A., Ünal, E., Çelik, E., Existence and uniqueness theorems for sequential linear conformable fractional differential equations, arXiv preprint, 2015. MR3527883
  18. Gözütok, N.Y., Gözütok, U., Multivariable conformable fractional calculus, math.CA 2017. 
  19. Gulsen, T., Yilmaz, E., Goktas, S., Conformable fractional Dirac system on time scales, J. Inequ. Appl. 2017 (2017), 1–10. (2017) MR3669797
  20. Iyiola, O.S., Nwaeze, E.R., 10.18576/pfda/020204, Progr. Fract. Differ. Appl. 2 (2) (2016), 115–122. (2016) DOI10.18576/pfda/020204
  21. Katugampola, U.N., A new fractional derivative with classical properties, preprint, 2014. MR3298307
  22. Khaldi, R., Guezane-Lakoud, A., 10.18576/pfda/030407, Progr. Fract. Differ. Appl. 3 (4) (2017), 323–329. (2017) DOI10.18576/pfda/030407
  23. Khalil, R., Horani, M. Al, Yousef, A., Sababheh, M., 10.1016/j.cam.2014.01.002, J. Comput. Appl. Math. 264 (2014), 65–70. (2014) MR3164103DOI10.1016/j.cam.2014.01.002
  24. Kilbas, A., Srivastava, M.H., Trujillo, J.J., Theory and Application of Fractional Differential Equations, vol. 204, North Holland Mathematics Studies, 2006. (2006) MR2218073
  25. Magin, R.L., 10.1615/CritRevBiomedEng.v32.10, CR in Biomedical Engineering 32 (1) (2004), 1–104. (2004) DOI10.1615/CritRevBiomedEng.v32.10
  26. Mirandette, B., Résultats d’existence pour des systèmes d’équations différentielles du premier ordre avec tube-solution, Mémoire de matrise, Université de Montréal, 1996. (1996) 
  27. Nwaeze, E.R., 10.18576/pfda/020406, Progr. Fract. Differ. Appl. 2 (4) (2016), 287–291. (2016) DOI10.18576/pfda/020406
  28. Ortigueira, M.D., Machado, J.A. Tenreiro, 10.1016/j.jcp.2014.07.019, J. Comput. Phys. 293 (2015), 4–13. (2015) MR3342452DOI10.1016/j.jcp.2014.07.019
  29. Pospisil, M., Skripkova, L.P., Sturm’s theorems for conformable fractional differential equations, Math. Commun. 21 (2016), 273–281. (2016) MR3517494
  30. Shi, A., Zhang, S., Upper and lower solutions method and a fractional differential equation boundary value problem, Progr. Fract. Differ. Appl. 30 (2009), 13 pages. (2009) MR2506151
  31. Shugui, K., Huiqing, C., Yaqing, Y., Ying, G., Existence and uniqueness of the solutions for the fractional initial value problem, Electr. J. Shanghai Normal University (Natural Sciences) 45 (3) (2016), 313–319. (2016) 
  32. Wang, Y., Zhou, J., Li, Y., Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales, Adv. Math. Phys. 2016 (2016), 21 pages. (2016) MR3579208
  33. Yang, X.J., Baleanu, D., Machado, J.A.T., Application of the local fractional Fourier series to fractal signals, Discontinuity and complexity in nonlinear physical systems, Springer, Cham, 2014, pp. 63–89. (2014) MR3204525
  34. Zhang, S., Su, X., 10.1016/j.camwa.2011.03.008, Comput. Math. Appl. 62 (3) (2011), 1269–1274. (2011) MR2824713DOI10.1016/j.camwa.2011.03.008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.