The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence results for systems of conformable fractional differential equations”

Functions of finite fractional variation and their applications to fractional impulsive equations

Dariusz Idczak (2017)

Czechoslovak Mathematical Journal

Similarity:

We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.

Left general fractional monotone approximation theory

George A. Anastassiou (2016)

Applicationes Mathematicae

Similarity:

We introduce left general fractional Caputo style derivatives with respect to an absolutely continuous strictly increasing function g. We give various examples of such fractional derivatives for different g. Let f be a p-times continuously differentiable function on [a,b], and let L be a linear left general fractional differential operator such that L(f) is non-negative over a closed subinterval I of [a,b]. We find a sequence of polynomials Qₙ of degree ≤n such that L(Qₙ) is non-negative...

Suitable domains to define fractional integrals of Weyl via fractional powers of operators

Celso Martínez, Antonia Redondo, Miguel Sanz (2011)

Studia Mathematica

Similarity:

We present a new method to study the classical fractional integrals of Weyl. This new approach basically consists in considering these operators in the largest space where they make sense. In particular, we construct a theory of fractional integrals of Weyl by studying these operators in an appropriate Fréchet space. This is a function space which contains the L p ( ) -spaces, and it appears in a natural way if we wish to identify these fractional operators with fractional powers of a suitable...

Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces

Zhinan Xia (2017)

Czechoslovak Mathematical Journal

Similarity:

In this paper, for the impulsive fractional integro-differential equations involving Caputo fractional derivative in Banach space, we investigate the existence and uniqueness of a pseudo almost periodic P C -mild solution. The working tools are based on the fixed point theorems, the fractional powers of operators and fractional calculus. Some known results are improved and generalized. Finally, existence and uniqueness of a pseudo almost periodic P C -mild solution of a two-dimensional impulsive...

Fractional Langevin equation with α-stable noise. A link to fractional ARIMA time series

M. Magdziarz, A. Weron (2007)

Studia Mathematica

Similarity:

We introduce a fractional Langevin equation with α-stable noise and show that its solution Y κ ( t ) , t 0 is the stationary α-stable Ornstein-Uhlenbeck-type process recently studied by Taqqu and Wolpert. We examine the asymptotic dependence structure of Y κ ( t ) via the measure of its codependence r(θ₁,θ₂,t). We prove that Y κ ( t ) is not a long-memory process in the sense of r(θ₁,θ₂,t). However, we find two natural continuous-time analogues of fractional ARIMA time series with long memory in the framework of...

Multiplicity results for a class of fractional boundary value problems

Nemat Nyamoradi (2013)

Annales Polonici Mathematici

Similarity:

We prove the existence of at least three solutions to the following fractional boundary value problem: ⎧ - d / d t ( 1 / 2 0 D t - σ ( u ' ( t ) ) + 1 / 2 t D T - σ ( u ' ( t ) ) ) - λ β ( t ) f ( u ( t ) ) - μ γ ( t ) g ( u ( t ) ) = 0 , a.e. t ∈ [0, T], ⎨ ⎩ u (0) = u (T) = 0, where 0 D t - σ and t D T - σ are the left and right Riemann-Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446-7454].