Valency seven symmetric graphs of order 2 p q

Xiao-Hui Hua; Li Chen

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 581-599
  • ISSN: 0011-4642

Abstract

top
A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order 2 p q are classified, where p , q are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order 4 p , and that for odd primes p and q , there is an infinite family of connected valency seven one-regular graphs of order 2 p q with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is 1 , 2 , 3 -arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.

How to cite

top

Hua, Xiao-Hui, and Chen, Li. "Valency seven symmetric graphs of order $2pq$." Czechoslovak Mathematical Journal 68.3 (2018): 581-599. <http://eudml.org/doc/294737>.

@article{Hua2018,
abstract = {A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order $2pq$ are classified, where $p$, $q$ are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order $4p$, and that for odd primes $p$ and $q$, there is an infinite family of connected valency seven one-regular graphs of order $2pq$ with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is $1,2,3$-arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.},
author = {Hua, Xiao-Hui, Chen, Li},
journal = {Czechoslovak Mathematical Journal},
keywords = {arc-transitive graph; symmetric graph; $s$-regular graph},
language = {eng},
number = {3},
pages = {581-599},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Valency seven symmetric graphs of order $2pq$},
url = {http://eudml.org/doc/294737},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Hua, Xiao-Hui
AU - Chen, Li
TI - Valency seven symmetric graphs of order $2pq$
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 581
EP - 599
AB - A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order $2pq$ are classified, where $p$, $q$ are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order $4p$, and that for odd primes $p$ and $q$, there is an infinite family of connected valency seven one-regular graphs of order $2pq$ with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is $1,2,3$-arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.
LA - eng
KW - arc-transitive graph; symmetric graph; $s$-regular graph
UR - http://eudml.org/doc/294737
ER -

References

top
  1. Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
  2. Cheng, Y., Oxley, J., 10.1016/0095-8956(87)90040-2, J. Comb. Theory, Ser. B 42 (1987), 196-211. (1987) Zbl0583.05032MR0884254DOI10.1016/0095-8956(87)90040-2
  3. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham (1985). (1985) Zbl0568.20001MR0827219
  4. Djoković, D. Ž., Miller, G. L., 10.1016/0095-8956(80)90081-7, J. Comb. Theory, Ser. B 29 (1980), 195-230. (1980) Zbl0385.05040MR0586434DOI10.1016/0095-8956(80)90081-7
  5. Fang, X. G., Praeger, C. E., 10.1080/00927879908826659, Commun. Algebra 27 (1999), 3727-3754. (1999) Zbl0956.05049MR1699629DOI10.1080/00927879908826659
  6. Fang, X., Wang, J., Xu, M. Y., 10.1006/eujc.2002.0579, Eur. J. Comb. 23 (2002), 785-791. (2002) Zbl1014.05033MR1928997DOI10.1006/eujc.2002.0579
  7. Feng, Y.-Q., Ghasemi, M., Yang, D.-W., 10.1016/j.disc.2013.11.013, Discrete Math. 318 (2014), 62-70. (2014) Zbl1281.05075MR3141628DOI10.1016/j.disc.2013.11.013
  8. Feng, Y.-Q., Kwak, J. H., 10.1016/j.jctb.2006.11.001, J. Comb. Theory, Ser. B 97 (2007), 627-646. (2007) Zbl1118.05043MR2325802DOI10.1016/j.jctb.2006.11.001
  9. Feng, Y.-Q., Kwak, J. H., Xu, M.-Y., 10.1002/jgt.20169, J. Graph Theory 52 (2006), 341-352. (2006) Zbl1100.05073MR2242833DOI10.1002/jgt.20169
  10. Feng, Y.-Q., Li, Y.-T., 10.1016/j.ejc.2010.10.002, Eur. J. Comb. 32 (2011), 265-275. (2011) Zbl1229.05114MR2738546DOI10.1016/j.ejc.2010.10.002
  11. Gardiner, A., Praeger, C. E., 10.1006/eujc.1994.1041, Eur. J. Comb. 15 (1994), 375-381. (1994) Zbl0806.05037MR1279075DOI10.1006/eujc.1994.1041
  12. Gardiner, A., Praeger, C. E., 10.1006/eujc.1994.1042, Eur. J. Comb. 15 (1994), 383-397. (1994) Zbl0806.05038MR1279076DOI10.1006/eujc.1994.1042
  13. Gorenstein, D., 10.1007/978-1-4684-8497-7, The University Series in Mathematics, Plenum Press, New York (1982). (1982) Zbl0483.20008MR0698782DOI10.1007/978-1-4684-8497-7
  14. Guo, S.-T., Feng, Y.-Q., 10.1016/j.disc.2012.04.015, Discrete Math. 312 (2012), 2214-2216. (2012) Zbl1246.05105MR2926093DOI10.1016/j.disc.2012.04.015
  15. Guo, S., Li, Y., Hua, X., 10.1142/S100538671600047X, Algebra Colloq. 23 (2016), 493-500. (2016) Zbl1345.05044MR3514538DOI10.1142/S100538671600047X
  16. Guo, S.-T., Shi, J., Zhang, Z.-J., Heptavalent symmetric graphs of order 4 p , South Asian J. Math. 1 (2011), 131-136. (2011) Zbl1242.05119MR3974117
  17. Hua, X.-H., Feng, Y.-Q., Lee, J., 10.1016/j.disc.2011.07.007, Discrete Math. 311 (2011), 2259-2267. (2011) Zbl1246.05072MR2825671DOI10.1016/j.disc.2011.07.007
  18. Li, Y., Feng, Y.-Q., 10.1142/S1005386710000490, Algebra Colloq. 17 (2010), 515-524. (2010) Zbl1221.05201MR2660442DOI10.1142/S1005386710000490
  19. Liebeck, M. W., Praeger, C. E., Saxl, J., 10.1016/0021-8693(87)90223-7, J. Algebra 111 (1987), 365-383. (1987) Zbl0632.20011MR0916173DOI10.1016/0021-8693(87)90223-7
  20. Lorimer, P., 10.1002/jgt.3190080107, J. Graph Theory 8 (1984), 55-68. (1984) Zbl0535.05031MR0732018DOI10.1002/jgt.3190080107
  21. McKay, B. D., 10.2307/2006085, Math. Comput. 33 (1979), 1101-1121. (1979) Zbl0411.05046MR0528064DOI10.2307/2006085
  22. Miller, R. C., 10.1016/0095-8956(71)90075-X, J. Comb. Theory, Ser. B 10 (1971), 163-182. (1971) Zbl0223.05113MR0285435DOI10.1016/0095-8956(71)90075-X
  23. Oh, J.-M., 10.1016/j.disc.2008.06.025, Discrete Math. 309 (2009), 2721-2726. (2009) Zbl1208.05055MR2523779DOI10.1016/j.disc.2008.06.025
  24. Oh, J.-M., 10.1016/j.disc.2008.09.001, Discrete Math. 309 (2009), 3150-3155. (2009) Zbl1177.05052MR2526732DOI10.1016/j.disc.2008.09.001
  25. Pan, J., Ling, B., Ding, S., 10.26493/1855-3974.1161.3b9, Ars Math. Contemp. 15 (2018), 53-65. (2018) MR3862077DOI10.26493/1855-3974.1161.3b9
  26. Pan, J., Lou, B., Liu, C., Arc-transitive pentavalent graphs of order 4 p q , Electron. J. Comb. 20 (2013), Researh Paper P36, 9 pages. (2013) Zbl1266.05061MR3035046
  27. Potočnik, P., 10.1016/j.ejc.2008.10.001, Eur. J. Comb. 30 (2009), 1323-1336. (2009) Zbl1208.05056MR2514656DOI10.1016/j.ejc.2008.10.001
  28. Sabidussi, G., 10.1007/BF01304186, Monatsh. Math. 68 (1964), 426-438. (1964) Zbl0136.44608MR0175815DOI10.1007/BF01304186
  29. Sims, C. C., 10.1007/BF01117534, Math. Z. 95 (1967), 76-86. (1967) Zbl0244.20001MR0204509DOI10.1007/BF01117534
  30. Suzuki, M., 10.1007/978-3-642-61804-8, Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). (1982) Zbl0472.20001MR0648772DOI10.1007/978-3-642-61804-8
  31. Wilson, R. A., 10.1007/978-1-84800-988-2, Graduate Texts in Mathematics 251, Springer, London (2009). (2009) Zbl1203.20012MR2562037DOI10.1007/978-1-84800-988-2
  32. Xu, J., Xu, M., 10.1007/s10012-001-0355-z, Southeast Asian Bull. Math. 25 (2001), 355-363. (2001) Zbl0993.05086MR1935107DOI10.1007/s10012-001-0355-z
  33. Xu, M.-Y., 10.1016/S0012-365X(97)00152-0, Discrete Math. 182 (1998), 309-319. (1998) Zbl0887.05025MR1603719DOI10.1016/S0012-365X(97)00152-0
  34. Zhou, J.-X., Feng, Y.-Q., 10.1017/S1446788710000066, J. Aust. Math. Soc. 88 (2010), 277-288. (2010) Zbl1214.05052MR2629936DOI10.1017/S1446788710000066

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.