Valency seven symmetric graphs of order
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 3, page 581-599
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHua, Xiao-Hui, and Chen, Li. "Valency seven symmetric graphs of order $2pq$." Czechoslovak Mathematical Journal 68.3 (2018): 581-599. <http://eudml.org/doc/294737>.
@article{Hua2018,
abstract = {A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order $2pq$ are classified, where $p$, $q$ are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order $4p$, and that for odd primes $p$ and $q$, there is an infinite family of connected valency seven one-regular graphs of order $2pq$ with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is $1,2,3$-arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.},
author = {Hua, Xiao-Hui, Chen, Li},
journal = {Czechoslovak Mathematical Journal},
keywords = {arc-transitive graph; symmetric graph; $s$-regular graph},
language = {eng},
number = {3},
pages = {581-599},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Valency seven symmetric graphs of order $2pq$},
url = {http://eudml.org/doc/294737},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Hua, Xiao-Hui
AU - Chen, Li
TI - Valency seven symmetric graphs of order $2pq$
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 581
EP - 599
AB - A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order $2pq$ are classified, where $p$, $q$ are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order $4p$, and that for odd primes $p$ and $q$, there is an infinite family of connected valency seven one-regular graphs of order $2pq$ with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is $1,2,3$-arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.
LA - eng
KW - arc-transitive graph; symmetric graph; $s$-regular graph
UR - http://eudml.org/doc/294737
ER -
References
top- Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
- Cheng, Y., Oxley, J., 10.1016/0095-8956(87)90040-2, J. Comb. Theory, Ser. B 42 (1987), 196-211. (1987) Zbl0583.05032MR0884254DOI10.1016/0095-8956(87)90040-2
- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham (1985). (1985) Zbl0568.20001MR0827219
- Djoković, D. Ž., Miller, G. L., 10.1016/0095-8956(80)90081-7, J. Comb. Theory, Ser. B 29 (1980), 195-230. (1980) Zbl0385.05040MR0586434DOI10.1016/0095-8956(80)90081-7
- Fang, X. G., Praeger, C. E., 10.1080/00927879908826659, Commun. Algebra 27 (1999), 3727-3754. (1999) Zbl0956.05049MR1699629DOI10.1080/00927879908826659
- Fang, X., Wang, J., Xu, M. Y., 10.1006/eujc.2002.0579, Eur. J. Comb. 23 (2002), 785-791. (2002) Zbl1014.05033MR1928997DOI10.1006/eujc.2002.0579
- Feng, Y.-Q., Ghasemi, M., Yang, D.-W., 10.1016/j.disc.2013.11.013, Discrete Math. 318 (2014), 62-70. (2014) Zbl1281.05075MR3141628DOI10.1016/j.disc.2013.11.013
- Feng, Y.-Q., Kwak, J. H., 10.1016/j.jctb.2006.11.001, J. Comb. Theory, Ser. B 97 (2007), 627-646. (2007) Zbl1118.05043MR2325802DOI10.1016/j.jctb.2006.11.001
- Feng, Y.-Q., Kwak, J. H., Xu, M.-Y., 10.1002/jgt.20169, J. Graph Theory 52 (2006), 341-352. (2006) Zbl1100.05073MR2242833DOI10.1002/jgt.20169
- Feng, Y.-Q., Li, Y.-T., 10.1016/j.ejc.2010.10.002, Eur. J. Comb. 32 (2011), 265-275. (2011) Zbl1229.05114MR2738546DOI10.1016/j.ejc.2010.10.002
- Gardiner, A., Praeger, C. E., 10.1006/eujc.1994.1041, Eur. J. Comb. 15 (1994), 375-381. (1994) Zbl0806.05037MR1279075DOI10.1006/eujc.1994.1041
- Gardiner, A., Praeger, C. E., 10.1006/eujc.1994.1042, Eur. J. Comb. 15 (1994), 383-397. (1994) Zbl0806.05038MR1279076DOI10.1006/eujc.1994.1042
- Gorenstein, D., 10.1007/978-1-4684-8497-7, The University Series in Mathematics, Plenum Press, New York (1982). (1982) Zbl0483.20008MR0698782DOI10.1007/978-1-4684-8497-7
- Guo, S.-T., Feng, Y.-Q., 10.1016/j.disc.2012.04.015, Discrete Math. 312 (2012), 2214-2216. (2012) Zbl1246.05105MR2926093DOI10.1016/j.disc.2012.04.015
- Guo, S., Li, Y., Hua, X., 10.1142/S100538671600047X, Algebra Colloq. 23 (2016), 493-500. (2016) Zbl1345.05044MR3514538DOI10.1142/S100538671600047X
- Guo, S.-T., Shi, J., Zhang, Z.-J., Heptavalent symmetric graphs of order , South Asian J. Math. 1 (2011), 131-136. (2011) Zbl1242.05119MR3974117
- Hua, X.-H., Feng, Y.-Q., Lee, J., 10.1016/j.disc.2011.07.007, Discrete Math. 311 (2011), 2259-2267. (2011) Zbl1246.05072MR2825671DOI10.1016/j.disc.2011.07.007
- Li, Y., Feng, Y.-Q., 10.1142/S1005386710000490, Algebra Colloq. 17 (2010), 515-524. (2010) Zbl1221.05201MR2660442DOI10.1142/S1005386710000490
- Liebeck, M. W., Praeger, C. E., Saxl, J., 10.1016/0021-8693(87)90223-7, J. Algebra 111 (1987), 365-383. (1987) Zbl0632.20011MR0916173DOI10.1016/0021-8693(87)90223-7
- Lorimer, P., 10.1002/jgt.3190080107, J. Graph Theory 8 (1984), 55-68. (1984) Zbl0535.05031MR0732018DOI10.1002/jgt.3190080107
- McKay, B. D., 10.2307/2006085, Math. Comput. 33 (1979), 1101-1121. (1979) Zbl0411.05046MR0528064DOI10.2307/2006085
- Miller, R. C., 10.1016/0095-8956(71)90075-X, J. Comb. Theory, Ser. B 10 (1971), 163-182. (1971) Zbl0223.05113MR0285435DOI10.1016/0095-8956(71)90075-X
- Oh, J.-M., 10.1016/j.disc.2008.06.025, Discrete Math. 309 (2009), 2721-2726. (2009) Zbl1208.05055MR2523779DOI10.1016/j.disc.2008.06.025
- Oh, J.-M., 10.1016/j.disc.2008.09.001, Discrete Math. 309 (2009), 3150-3155. (2009) Zbl1177.05052MR2526732DOI10.1016/j.disc.2008.09.001
- Pan, J., Ling, B., Ding, S., 10.26493/1855-3974.1161.3b9, Ars Math. Contemp. 15 (2018), 53-65. (2018) MR3862077DOI10.26493/1855-3974.1161.3b9
- Pan, J., Lou, B., Liu, C., Arc-transitive pentavalent graphs of order , Electron. J. Comb. 20 (2013), Researh Paper P36, 9 pages. (2013) Zbl1266.05061MR3035046
- Potočnik, P., 10.1016/j.ejc.2008.10.001, Eur. J. Comb. 30 (2009), 1323-1336. (2009) Zbl1208.05056MR2514656DOI10.1016/j.ejc.2008.10.001
- Sabidussi, G., 10.1007/BF01304186, Monatsh. Math. 68 (1964), 426-438. (1964) Zbl0136.44608MR0175815DOI10.1007/BF01304186
- Sims, C. C., 10.1007/BF01117534, Math. Z. 95 (1967), 76-86. (1967) Zbl0244.20001MR0204509DOI10.1007/BF01117534
- Suzuki, M., 10.1007/978-3-642-61804-8, Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). (1982) Zbl0472.20001MR0648772DOI10.1007/978-3-642-61804-8
- Wilson, R. A., 10.1007/978-1-84800-988-2, Graduate Texts in Mathematics 251, Springer, London (2009). (2009) Zbl1203.20012MR2562037DOI10.1007/978-1-84800-988-2
- Xu, J., Xu, M., 10.1007/s10012-001-0355-z, Southeast Asian Bull. Math. 25 (2001), 355-363. (2001) Zbl0993.05086MR1935107DOI10.1007/s10012-001-0355-z
- Xu, M.-Y., 10.1016/S0012-365X(97)00152-0, Discrete Math. 182 (1998), 309-319. (1998) Zbl0887.05025MR1603719DOI10.1016/S0012-365X(97)00152-0
- Zhou, J.-X., Feng, Y.-Q., 10.1017/S1446788710000066, J. Aust. Math. Soc. 88 (2010), 277-288. (2010) Zbl1214.05052MR2629936DOI10.1017/S1446788710000066
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.