Strict Mittag-Leffler conditions and locally split morphisms

Yanjiong Yang; Xiaoguang Yan

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 677-686
  • ISSN: 0011-4642

Abstract

top
In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.

How to cite

top

Yang, Yanjiong, and Yan, Xiaoguang. "Strict Mittag-Leffler conditions and locally split morphisms." Czechoslovak Mathematical Journal 68.3 (2018): 677-686. <http://eudml.org/doc/294739>.

@article{Yang2018,
abstract = {In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.},
author = {Yang, Yanjiong, Yan, Xiaoguang},
journal = {Czechoslovak Mathematical Journal},
keywords = {strict Mittag-Leffler condition; locally split morphism; Gorenstein projective module; Ding projective module},
language = {eng},
number = {3},
pages = {677-686},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strict Mittag-Leffler conditions and locally split morphisms},
url = {http://eudml.org/doc/294739},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Yang, Yanjiong
AU - Yan, Xiaoguang
TI - Strict Mittag-Leffler conditions and locally split morphisms
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 677
EP - 686
AB - In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.
LA - eng
KW - strict Mittag-Leffler condition; locally split morphism; Gorenstein projective module; Ding projective module
UR - http://eudml.org/doc/294739
ER -

References

top
  1. Hügel, L. Angeleri, Bazzoni, S., Herbera, D., 10.1090/S0002-9947-07-04255-9, Trans. Am. Math. Soc. 360 (2008), 2409-2421. (2008) Zbl1136.13005MR2373319DOI10.1090/S0002-9947-07-04255-9
  2. Hügel, L. Angeleri, Herbera, D., 10.1512/iumj.2008.57.3325, Indiana Univ. Math. J. 57 (2008), 2459-2517. (2008) Zbl1206.16002MR2463975DOI10.1512/iumj.2008.57.3325
  3. Azumaya, G., 10.1090/conm/124, Azumaya Algebras, Actions, and Modules Proc. Conf., Bloomington 1990, Contemp. Math. 124, Am. Math. Soc., Providence (1992), 17-22. (1992) Zbl0743.16003MR1144024DOI10.1090/conm/124
  4. Bazzoni, S., Herbera, D., 10.1007/s10468-007-9064-3, Algebr. Represent. Theory 11 (2008), 43-61. (2008) Zbl1187.16008MR2369100DOI10.1007/s10468-007-9064-3
  5. Bazzoni, S., Šťovíček, J., 10.1090/S0002-9939-07-08911-3, Proc. Am. Math. Soc. 135 (2007), 3771-3781. (2007) Zbl1132.16008MR2341926DOI10.1090/S0002-9939-07-08911-3
  6. Bennis, D., Mahdou, N., 10.1016/j.jpaa.2006.10.010, J. Pure Appl. Algebra 210 (2007), 437-445. (2007) Zbl1118.13014MR2320007DOI10.1016/j.jpaa.2006.10.010
  7. Chase, S. U., 10.2307/1993382, Trans. Am. Math. Soc. 97 (1960), 457-473. (1960) Zbl0100.26602MR0120260DOI10.2307/1993382
  8. Ding, N., Li, Y., Mao, L., 10.1017/S1446788708000761, J. Aust. Math. Soc. 86 (2009), 323-338. (2009) Zbl1200.16010MR2529328DOI10.1017/S1446788708000761
  9. Emmanouil, I., 10.1016/j.aim.2010.06.007, Adv. Math. 225 (2010), 3446-3462. (2010) Zbl1214.20050MR2729012DOI10.1016/j.aim.2010.06.007
  10. Emmanouil, I., Talelli, O., 10.1112/jlms/jdr014, J. Lond. Math. Soc., II. Ser. 84 (2011), 408-432. (2011) Zbl1237.16004MR2835337DOI10.1112/jlms/jdr014
  11. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  12. Gillespie, J., 10.4310/HHA.2010.v12.n1.a6, Homology Homotopy Appl. 12 (2010), 61-73. (2010) Zbl1231.16005MR2607410DOI10.4310/HHA.2010.v12.n1.a6
  13. Grothendieck, A., Techniques de construction et théorèmes d'existence en géométrie algébrique. III. Préschemas quotients, Sém. Bourbaki, Vol. 6, 1960-1961 Soc. Math. France, Paris (1995), French 99-118. (1995) Zbl0235.14007MR1611786
  14. Herbera, D., Trlifaj, J., 10.1016/j.aim.2012.02.013, Adv. Math. 229 (2012), 3436-3467. (2012) Zbl1279.16001MR2900444DOI10.1016/j.aim.2012.02.013
  15. Raynaud, M., Gruson, L., 10.1007/BF01390094, Invent. Math. 13 (1971), 1-89 French. (1971) Zbl0227.14010MR0308104DOI10.1007/BF01390094
  16. Zimmermann, W., 10.1016/S0022-4049(01)00011-1, J. Pure Appl. Algebra 166 (2002), 337-357. (2002) Zbl0993.16002MR1870625DOI10.1016/S0022-4049(01)00011-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.