Reconstruction algorithms for an inverse medium problem
Applications of Mathematics (2018)
- Volume: 63, Issue: 2, page 195-216
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Ji-Chuan. "Reconstruction algorithms for an inverse medium problem." Applications of Mathematics 63.2 (2018): 195-216. <http://eudml.org/doc/294756>.
@article{Liu2018,
abstract = {In this paper, we consider a two-dimensional inverse medium problem from noisy observation data. We propose effective reconstruction algorithms to detect the number, the location and the size of the piecewise constant medium within a body, and then we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear and ill-posed, thus we should consider stable and elegant approaches in order to improve the corresponding approximation. We give several examples to show the viability of our proposed algorithms.},
author = {Liu, Ji-Chuan},
journal = {Applications of Mathematics},
keywords = {inverse medium problem; Levenberg-Marquardt algorithm; trust-region-reflective algorithm; ill-posed problem},
language = {eng},
number = {2},
pages = {195-216},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Reconstruction algorithms for an inverse medium problem},
url = {http://eudml.org/doc/294756},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Liu, Ji-Chuan
TI - Reconstruction algorithms for an inverse medium problem
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 195
EP - 216
AB - In this paper, we consider a two-dimensional inverse medium problem from noisy observation data. We propose effective reconstruction algorithms to detect the number, the location and the size of the piecewise constant medium within a body, and then we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear and ill-posed, thus we should consider stable and elegant approaches in order to improve the corresponding approximation. We give several examples to show the viability of our proposed algorithms.
LA - eng
KW - inverse medium problem; Levenberg-Marquardt algorithm; trust-region-reflective algorithm; ill-posed problem
UR - http://eudml.org/doc/294756
ER -
References
top- Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M., Fink, M., 10.1137/070686408, SIAM J. Appl. Math. 68 (2008), 1557-1573. (2008) Zbl1156.35101MR2424952DOI10.1137/070686408
- Ammari, H., Bossy, E., Garnier, J., Nguyen, L. H., Seppecher, L., 10.1090/S0002-9939-2014-12090-9, Proc. Am. Math. Soc. 142 (2014), 3221-3236. (2014) Zbl1302.65284MR3223378DOI10.1090/S0002-9939-2014-12090-9
- Ammari, H., Bossy, E., Garnier, J., Seppecher, L., 10.1137/120863654, SIAM J. Appl. Math. 72 (2012), 1592-1617. (2012) Zbl1268.78015MR3022278DOI10.1137/120863654
- Ammari, H., Capdeboscq, Y., Gournay, F. de, Rozanova-Pierrat, A., Triki, F., 10.1137/110828241, SIAM J. Appl. Math. 71 (2011), 2112-2130. (2011) Zbl1235.31006MR2873260DOI10.1137/110828241
- Ammari, H., Capdeboscq, Y., Kang, H., Kozhemyak, A., 10.1017/S0956792509007888, Eur. J. Appl. Math. 20 (2009), 303-317. (2009) Zbl1187.92058MR2511278DOI10.1017/S0956792509007888
- Ammari, H., Garnier, J., Nguyen, L. H., Seppecher, L., 10.1080/03605302.2013.803483, Commun. Partial Differ. Equations 38 (2013), 1737-1762. (2013) Zbl06256850MR3169761DOI10.1080/03605302.2013.803483
- Bal, G., Schotland, J. C., 10.1103/physrevlett.104.043902, Phys. Rev. Lett. 104 (2010), Article ID 043902. (2010) DOI10.1103/physrevlett.104.043902
- Bal, G., Uhlmann, G., 10.1002/cpa.21453, Commun. Pure Appl. Math. 66 (2013), 1629-1652. (2013) Zbl1273.35308MR3084700DOI10.1002/cpa.21453
- Bao, G., Triki, T., 10.4208/jcm.1003-m0004, J. Comput. Math. 28 (2010), 725-744. (2010) Zbl1240.35574MR2765913DOI10.4208/jcm.1003-m0004
- Choulli, M., Triki, F., 10.1137/140988577, SIAM J. Math. Anal. 47 (2015), 1778-1799. (2015) Zbl1335.35294MR3345935DOI10.1137/140988577
- Coleman, T. F., Li, Y., 10.1007/BF01582221, Math. Program. 67 (1994), 189-224. (1994) Zbl0842.90106MR1305566DOI10.1007/BF01582221
- Coleman, T., Li, Y., 10.1137/0806023, SIAM J. Optim. 6 (1996), 418-445. (1996) Zbl0855.65063MR1387333DOI10.1137/0806023
- Colton, D., Kress, R., Integral Equation Methods in Scattering Theory, Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, New York (1983). (1983) Zbl0522.35001MR0700400
- Colton, D., Kress, R., 10.1007/978-3-662-02835-3, Applied Mathematical Sciences 93, Springer, Berlin (1992). (1992) Zbl0760.35053MR1183732DOI10.1007/978-3-662-02835-3
- Hanke, M., Rundell, W., 10.3934/ipi.2011.5.185, Inverse Probl. Imaging 5 (2011), 185-202. (2011) Zbl1215.35166MR2773431DOI10.3934/ipi.2011.5.185
- Isakov, V., 10.1007/0-387-32183-7, Applied Mathematical Sciences 127, Springer, New York (2006). (2006) Zbl1092.35001MR2193218DOI10.1007/0-387-32183-7
- Ito, K., Jin, B., Zou, J., 10.1088/0266-5611/28/2/025003, Inverse Probl. 28 (2012), Article ID 025003, 11 pages. (2012) Zbl1241.78025MR2876854DOI10.1088/0266-5611/28/2/025003
- Kress, R., 10.1007/978-1-4612-0559-3, Applied Mathematical Sciences 82, Springer, New York (1999). (1999) Zbl0920.45001MR1723850DOI10.1007/978-1-4612-0559-3
- Levenberg, K., 10.1090/qam/10666, Q. Appl. Math. 2 (1944), 164-168. (1944) Zbl0063.03501MR0010666DOI10.1090/qam/10666
- Marquardt, D. W., 10.1137/0111030, J. Soc. Ind. Appl. Math. 11 (1963), 431-441. (1963) Zbl0112.10505MR0153071DOI10.1137/0111030
- McLean, W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge (2000). (2000) Zbl0948.35001MR1742312
- Moré, J. J., 10.1007/bfb0067700, Numerical Analysis G. A. Watson et al. Lecture Notes in Mathematics 630, Springer, Berlin (1978), 105-116. (1978) Zbl0372.65022MR0483445DOI10.1007/bfb0067700
- Schotland, J. C., 10.1007/978-3-642-22990-9_1, Mathematical Modeling in Biomedical Imaging II H. Ammari et al. Lecture Notes in Mathematics 2035, Springer, Berlin (2012), 1-29. (2012) Zbl1345.92090MR3024668DOI10.1007/978-3-642-22990-9_1
- Sylvester, J., Uhlmann, G., 10.2307/1971291, Ann. Math. (2) 125 (1987), 153-169. (1987) Zbl0625.35078MR0873380DOI10.2307/1971291
- Triki, F., 10.1088/0266-5611/26/9/095014, Inverse Probl. 26 (2010), Article ID 095014, 11 pages. (2010) Zbl1200.35333MR2679551DOI10.1088/0266-5611/26/9/095014
- Widlak, T., Scherzer, O., 10.1088/0266-5611/31/3/035005, Inverse Probl. 31 (2015), Article ID 035005, 27 pages. (2015) Zbl1309.92050MR3319371DOI10.1088/0266-5611/31/3/035005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.