Reconstruction algorithms for an inverse medium problem

Ji-Chuan Liu

Applications of Mathematics (2018)

  • Volume: 63, Issue: 2, page 195-216
  • ISSN: 0862-7940

Abstract

top
In this paper, we consider a two-dimensional inverse medium problem from noisy observation data. We propose effective reconstruction algorithms to detect the number, the location and the size of the piecewise constant medium within a body, and then we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear and ill-posed, thus we should consider stable and elegant approaches in order to improve the corresponding approximation. We give several examples to show the viability of our proposed algorithms.

How to cite

top

Liu, Ji-Chuan. "Reconstruction algorithms for an inverse medium problem." Applications of Mathematics 63.2 (2018): 195-216. <http://eudml.org/doc/294756>.

@article{Liu2018,
abstract = {In this paper, we consider a two-dimensional inverse medium problem from noisy observation data. We propose effective reconstruction algorithms to detect the number, the location and the size of the piecewise constant medium within a body, and then we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear and ill-posed, thus we should consider stable and elegant approaches in order to improve the corresponding approximation. We give several examples to show the viability of our proposed algorithms.},
author = {Liu, Ji-Chuan},
journal = {Applications of Mathematics},
keywords = {inverse medium problem; Levenberg-Marquardt algorithm; trust-region-reflective algorithm; ill-posed problem},
language = {eng},
number = {2},
pages = {195-216},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Reconstruction algorithms for an inverse medium problem},
url = {http://eudml.org/doc/294756},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Liu, Ji-Chuan
TI - Reconstruction algorithms for an inverse medium problem
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 195
EP - 216
AB - In this paper, we consider a two-dimensional inverse medium problem from noisy observation data. We propose effective reconstruction algorithms to detect the number, the location and the size of the piecewise constant medium within a body, and then we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear and ill-posed, thus we should consider stable and elegant approaches in order to improve the corresponding approximation. We give several examples to show the viability of our proposed algorithms.
LA - eng
KW - inverse medium problem; Levenberg-Marquardt algorithm; trust-region-reflective algorithm; ill-posed problem
UR - http://eudml.org/doc/294756
ER -

References

top
  1. Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M., Fink, M., 10.1137/070686408, SIAM J. Appl. Math. 68 (2008), 1557-1573. (2008) Zbl1156.35101MR2424952DOI10.1137/070686408
  2. Ammari, H., Bossy, E., Garnier, J., Nguyen, L. H., Seppecher, L., 10.1090/S0002-9939-2014-12090-9, Proc. Am. Math. Soc. 142 (2014), 3221-3236. (2014) Zbl1302.65284MR3223378DOI10.1090/S0002-9939-2014-12090-9
  3. Ammari, H., Bossy, E., Garnier, J., Seppecher, L., 10.1137/120863654, SIAM J. Appl. Math. 72 (2012), 1592-1617. (2012) Zbl1268.78015MR3022278DOI10.1137/120863654
  4. Ammari, H., Capdeboscq, Y., Gournay, F. de, Rozanova-Pierrat, A., Triki, F., 10.1137/110828241, SIAM J. Appl. Math. 71 (2011), 2112-2130. (2011) Zbl1235.31006MR2873260DOI10.1137/110828241
  5. Ammari, H., Capdeboscq, Y., Kang, H., Kozhemyak, A., 10.1017/S0956792509007888, Eur. J. Appl. Math. 20 (2009), 303-317. (2009) Zbl1187.92058MR2511278DOI10.1017/S0956792509007888
  6. Ammari, H., Garnier, J., Nguyen, L. H., Seppecher, L., 10.1080/03605302.2013.803483, Commun. Partial Differ. Equations 38 (2013), 1737-1762. (2013) Zbl06256850MR3169761DOI10.1080/03605302.2013.803483
  7. Bal, G., Schotland, J. C., 10.1103/physrevlett.104.043902, Phys. Rev. Lett. 104 (2010), Article ID 043902. (2010) DOI10.1103/physrevlett.104.043902
  8. Bal, G., Uhlmann, G., 10.1002/cpa.21453, Commun. Pure Appl. Math. 66 (2013), 1629-1652. (2013) Zbl1273.35308MR3084700DOI10.1002/cpa.21453
  9. Bao, G., Triki, T., 10.4208/jcm.1003-m0004, J. Comput. Math. 28 (2010), 725-744. (2010) Zbl1240.35574MR2765913DOI10.4208/jcm.1003-m0004
  10. Choulli, M., Triki, F., 10.1137/140988577, SIAM J. Math. Anal. 47 (2015), 1778-1799. (2015) Zbl1335.35294MR3345935DOI10.1137/140988577
  11. Coleman, T. F., Li, Y., 10.1007/BF01582221, Math. Program. 67 (1994), 189-224. (1994) Zbl0842.90106MR1305566DOI10.1007/BF01582221
  12. Coleman, T., Li, Y., 10.1137/0806023, SIAM J. Optim. 6 (1996), 418-445. (1996) Zbl0855.65063MR1387333DOI10.1137/0806023
  13. Colton, D., Kress, R., Integral Equation Methods in Scattering Theory, Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, New York (1983). (1983) Zbl0522.35001MR0700400
  14. Colton, D., Kress, R., 10.1007/978-3-662-02835-3, Applied Mathematical Sciences 93, Springer, Berlin (1992). (1992) Zbl0760.35053MR1183732DOI10.1007/978-3-662-02835-3
  15. Hanke, M., Rundell, W., 10.3934/ipi.2011.5.185, Inverse Probl. Imaging 5 (2011), 185-202. (2011) Zbl1215.35166MR2773431DOI10.3934/ipi.2011.5.185
  16. Isakov, V., 10.1007/0-387-32183-7, Applied Mathematical Sciences 127, Springer, New York (2006). (2006) Zbl1092.35001MR2193218DOI10.1007/0-387-32183-7
  17. Ito, K., Jin, B., Zou, J., 10.1088/0266-5611/28/2/025003, Inverse Probl. 28 (2012), Article ID 025003, 11 pages. (2012) Zbl1241.78025MR2876854DOI10.1088/0266-5611/28/2/025003
  18. Kress, R., 10.1007/978-1-4612-0559-3, Applied Mathematical Sciences 82, Springer, New York (1999). (1999) Zbl0920.45001MR1723850DOI10.1007/978-1-4612-0559-3
  19. Levenberg, K., 10.1090/qam/10666, Q. Appl. Math. 2 (1944), 164-168. (1944) Zbl0063.03501MR0010666DOI10.1090/qam/10666
  20. Marquardt, D. W., 10.1137/0111030, J. Soc. Ind. Appl. Math. 11 (1963), 431-441. (1963) Zbl0112.10505MR0153071DOI10.1137/0111030
  21. McLean, W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge (2000). (2000) Zbl0948.35001MR1742312
  22. Moré, J. J., 10.1007/bfb0067700, Numerical Analysis G. A. Watson et al. Lecture Notes in Mathematics 630, Springer, Berlin (1978), 105-116. (1978) Zbl0372.65022MR0483445DOI10.1007/bfb0067700
  23. Schotland, J. C., 10.1007/978-3-642-22990-9_1, Mathematical Modeling in Biomedical Imaging II H. Ammari et al. Lecture Notes in Mathematics 2035, Springer, Berlin (2012), 1-29. (2012) Zbl1345.92090MR3024668DOI10.1007/978-3-642-22990-9_1
  24. Sylvester, J., Uhlmann, G., 10.2307/1971291, Ann. Math. (2) 125 (1987), 153-169. (1987) Zbl0625.35078MR0873380DOI10.2307/1971291
  25. Triki, F., 10.1088/0266-5611/26/9/095014, Inverse Probl. 26 (2010), Article ID 095014, 11 pages. (2010) Zbl1200.35333MR2679551DOI10.1088/0266-5611/26/9/095014
  26. Widlak, T., Scherzer, O., 10.1088/0266-5611/31/3/035005, Inverse Probl. 31 (2015), Article ID 035005, 27 pages. (2015) Zbl1309.92050MR3319371DOI10.1088/0266-5611/31/3/035005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.