Generalized tilting modules over ring extension
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 801-810
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Zhen. "Generalized tilting modules over ring extension." Czechoslovak Mathematical Journal 69.3 (2019): 801-810. <http://eudml.org/doc/294776>.
@article{Zhang2019,
abstract = {Let $ \Gamma $ be a ring extension of $R$. We show the left $\Gamma $-module $U=\Gamma \otimes _\{R\}C$ with the endmorphism ring End$_\{\Gamma \}U=\Delta $ is a generalized tilting module when $_\{R\}C$ is a generalized tilting module under some conditions.},
author = {Zhang, Zhen},
journal = {Czechoslovak Mathematical Journal},
keywords = {ring extension; generalized tilting module; faithfully balanced bimodule},
language = {eng},
number = {3},
pages = {801-810},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized tilting modules over ring extension},
url = {http://eudml.org/doc/294776},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Zhang, Zhen
TI - Generalized tilting modules over ring extension
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 801
EP - 810
AB - Let $ \Gamma $ be a ring extension of $R$. We show the left $\Gamma $-module $U=\Gamma \otimes _{R}C$ with the endmorphism ring End$_{\Gamma }U=\Delta $ is a generalized tilting module when $_{R}C$ is a generalized tilting module under some conditions.
LA - eng
KW - ring extension; generalized tilting module; faithfully balanced bimodule
UR - http://eudml.org/doc/294776
ER -
References
top- Assem, I., Marmaridis, N., 10.1080/00927879808826219, Commun. Algebra 26 (1998), 1547-1555. (1998) Zbl0915.16007MR1622428DOI10.1080/00927879808826219
- Christensen, L. W., 10.1090/S0002-9947-01-02627-7, Trans. Am. Math. Soc. 353 (2001), 1839-1883. (2001) Zbl0969.13006MR1813596DOI10.1090/S0002-9947-01-02627-7
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
- Foxby, H.-B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1972), 267-284. (1972) Zbl0272.13009MR0327752DOI10.7146/math.scand.a-11434
- Fuller, K. R., 10.1080/00927879708826026, Commun. Algebra 25 (1997), 2839-2860. (1997) Zbl0885.16019MR1458733DOI10.1080/00927879708826026
- Fuller, K. R., 10.1090/conm/259, Algebra and Its Applications Contemp. Math. 259, American Mathematical Society, Providence D. V. Huynh et al. (2000), 213-222. (2000) Zbl0965.16004MR1778503DOI10.1090/conm/259
- Göbel, R., Trlifaj, J., 10.1090/conm/259, De Gruyter Expositions in Mathematics 41, Walter De Gruyter, Berlin (2006). (2006) Zbl1121.16002MR2251271DOI10.1090/conm/259
- Golod, E. S., -dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova Russian 165 (1984), 62-66. (1984) Zbl0577.13008MR0752933
- Holm, H., White, D., 10.1215/kjm/1250692289, J. Math. Kyoto Univ. 47 (2007), 781-808. (2007) Zbl1154.16007MR2413065DOI10.1215/kjm/1250692289
- Miyashita, Y., 10.1007/BF01163359, Math. Z. 193 (1986), 113-146. (1986) Zbl0578.16015MR0852914DOI10.1007/BF01163359
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s00209-009-0480-4, Math. Z. 264 (2010), 571-600. (2010) Zbl1190.13007MR2591820DOI10.1007/s00209-009-0480-4
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1016/j.jalgebra.2010.07.007, J. Algebra 324 (2010), 2336-2368. (2010) Zbl1207.13009MR2684143DOI10.1016/j.jalgebra.2010.07.007
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s10468-009-9195-9, Algebr. Represent. Theory 14 (2011), 403-428. (2011) Zbl1317.13029MR2785915DOI10.1007/s10468-009-9195-9
- Tonolo, A., 10.1515/form.2005.17.4.555, Forum Math. 17 (2005), 555-567. (2005) Zbl1088.16011MR2154419DOI10.1515/form.2005.17.4.555
- Vasconcelos, W. V., 10.1016/s0304-0208(08)x7021-5, North-Holland Mathematics Studies 14. Notas de Matematica 53, North-Holland Publishing, Amsterdam; American Elsevier Publishing Company, New York (1974). (1974) Zbl0296.13005MR0498530DOI10.1016/s0304-0208(08)x7021-5
- Wakamatsu, T., 10.1016/0021-8693(88)90215-3, J. Algebra 114 (1988), 106-114. (1988) Zbl0646.16025MR0931903DOI10.1016/0021-8693(88)90215-3
- Wakamatsu, T., 10.1016/0021-8693(90)90055-S, J. Algebra 134 (1990), 298-325. (1990) Zbl0726.16009MR1074331DOI10.1016/0021-8693(90)90055-S
- Wakamatsu, T., 10.1016/j.jalgebra.2003.12.008, J. Algebra 275 (2004), 3-39. (2004) Zbl1076.16006MR2047438DOI10.1016/j.jalgebra.2003.12.008
- Wei, J., 10.1016/j.jalgebra.2006.10.026, J. Algebra 310 (2007), 903-916. (2007) Zbl1118.16011MR2308185DOI10.1016/j.jalgebra.2006.10.026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.