Displaying similar documents to “Generalized tilting modules over ring extension”

Special modules for R ( PSL ( 2 , q ) )

Liufeng Cao, Huixiang Chen (2023)

Czechoslovak Mathematical Journal

Similarity:

Let R be a fusion ring and R : = R be the corresponding fusion algebra. We first show that the algebra R has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, R admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra R ( PSL ( 2 , q ) ) : = r ( PSL ( 2 , q ) ) up to isomorphism, where r ( PSL ( 2 , q ) ) is the...

Relative Gorenstein injective covers with respect to a semidualizing module

Elham Tavasoli, Maryam Salimi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring and let C be a semidualizing R -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to C which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every G C -injective module G , the character module G + is G C -flat, then the class 𝒢ℐ C ( R ) 𝒜 C ( R ) is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class 𝒢ℐ C ( R ) 𝒜 C ( R ) ...

Some results on G C -flat dimension of modules

Ramalingam Udhayakumar, Intan Muchtadi-Alamsyah, Chelliah Selvaraj (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we study some properties of G C -flat R -modules, where C is a semidualizing module over a commutative ring R and we investigate the relation between the G C -yoke with the C -yoke of a module as well as the relation between the G C -flat resolution and the flat resolution of a module over G F -closed rings. We also obtain a criterion for computing the G C -flat dimension of modules.

Relative tilting modules with respect to a semidualizing module

Maryam Salimi (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, and let C be a semidualizing R -module. The notion of C -tilting R -modules is introduced as the relative setting of the notion of tilting R -modules with respect to C . Some properties of tilting and C -tilting modules and the relations between them are mentioned. It is shown that every finitely generated C -tilting R -module is C -projective. Finally, we investigate some kernel subcategories related to C -tilting modules.

A note on generalizations of semisimple modules

Engin Kaynar, Burcu N. Türkmen, Ergül Türkmen (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A left module M over an arbitrary ring is called an ℛ𝒟 -module (or an ℛ𝒮 -module) if every submodule N of M with Rad ( M ) N is a direct summand of (a supplement in, respectively) M . In this paper, we investigate the various properties of ℛ𝒟 -modules and ℛ𝒮 -modules. We prove that M is an ℛ𝒟 -module if and only if M = Rad ( M ) X , where X is semisimple. We show that a finitely generated ℛ𝒮 -module is semisimple. This gives us the characterization of semisimple rings in terms of ℛ𝒮 -modules. We completely determine the structure...

Coherence relative to a weak torsion class

Zhanmin Zhu (2018)

Czechoslovak Mathematical Journal

Similarity:

Let R be a ring. A subclass 𝒯 of left R -modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let 𝒯 be a weak torsion class of left R -modules and n a positive integer. Then a left R -module M is called 𝒯 -finitely generated if there exists a finitely generated submodule N such that M / N 𝒯 ; a left R -module A is called ( 𝒯 , n ) -presented if there exists an exact sequence of left R -modules 0 K n - 1 F n - 1 F 1 F 0 M 0 such that F 0 , , F n - 1 are finitely generated free and K n - 1 is 𝒯 -finitely generated;...

On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence

Kosar Abolfath Beigi, Kamran Divaani-Aazar, Massoud Tousi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a local ring and C a semidualizing module of R . We investigate the behavior of certain classes of generalized Cohen-Macaulay R -modules under the Foxby equivalence between the Auslander and Bass classes with respect to C . In particular, we show that generalized Cohen-Macaulay R -modules are invariant under this equivalence and if M is a finitely generated R -module in the Auslander class with respect to C such that C R M is surjective Buchsbaum, then M is also surjective Buchsbaum. ...

Some homological properties of amalgamated modules along an ideal

Hanieh Shoar, Maryam Salimi, Abolfazl Tehranian, Hamid Rasouli, Elham Tavasoli (2023)

Czechoslovak Mathematical Journal

Similarity:

Let R and S be commutative rings with identity, J be an ideal of S , f : R S be a ring homomorphism, M be an R -module, N be an S -module, and let ϕ : M N be an R -homomorphism. The amalgamation of R with S along J with respect to f denoted by R f J was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of ( R f J ) -module called the amalgamation of M and N along J with respect to ϕ , and denoted by M ϕ J N . We study some homological properties of the ( R f J ) -module M ϕ J N . Among...

Ding projective and Ding injective modules over trivial ring extensions

Lixin Mao (2023)

Czechoslovak Mathematical Journal

Similarity:

Let R M be a trivial extension of a ring R by an R - R -bimodule M such that M R , R M , ( R , 0 ) R M and R M ( R , 0 ) have finite flat dimensions. We prove that ( X , α ) is a Ding projective left R M -module if and only if the sequence M R M R X M α M R X α X is exact and coker ( α ) is a Ding projective left R -module. Analogously, we explicitly describe Ding injective R M -modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.

Cofiniteness and finiteness of local cohomology modules over regular local rings

Jafar A'zami, Naser Pourreza (2017)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a commutative Noetherian regular local ring of dimension d and I be a proper ideal of R such that mAss R ( R / I ) = Assh R ( I ) . It is shown that the R -module H I ht ( I ) ( R ) is I -cofinite if and only if cd ( I , R ) = ht ( I ) . Also we present a sufficient condition under which this condition the R -module H I i ( R ) is finitely generated if and only if it vanishes.

Finitistic dimension and restricted injective dimension

Dejun Wu (2015)

Czechoslovak Mathematical Journal

Similarity:

We study the relations between finitistic dimensions and restricted injective dimensions. Let R be a ring and T a left R -module with A = End R T . If R T is selforthogonal, then we show that rid ( T A ) findim ( A A ) findim ( R T ) + rid ( T A ) . Moreover, if R is a left noetherian ring and T is a finitely generated left R -module with finite injective dimension, then rid ( T A ) findim ( A A ) fin . inj . dim ( R R ) + rid ( T A ) . Also we show by an example that the restricted injective dimensions of a module may be strictly smaller than the Gorenstein injective dimension.

On the minimaxness and coatomicness of local cohomology modules

Marzieh Hatamkhani, Hajar Roshan-Shekalgourabi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, I an ideal of R and M an R -module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and 𝒞 -minimaxness of local cohomology modules. We show that if M is a minimax R -module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if n is a nonnegative integer such that ( H I i ( M ) ) 𝔪 is a minimax R 𝔪 -module for all 𝔪 Max ( R ) and for all i < n , then the set Ass R ( H I n ( M ) ) is finite. Also, if H I i ( M ) is...