On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy

Jurjen Duintjer Tebbens; Ctirad Matonoha; Andreas Matthios; Štěpán Papáček

Applications of Mathematics (2019)

  • Volume: 64, Issue: 2, page 253-277
  • ISSN: 0862-7940

Abstract

top
A pharmacodynamic model introduced earlier in the literature for in silico prediction of rifampicin-induced CYP3A4 enzyme production is described and some aspects of the involved curve-fitting based parameter estimation are discussed. Validation with our own laboratory data shows that the quality of the fit is particularly sensitive with respect to an unknown parameter representing the concentration of the nuclear receptor PXR (pregnane X receptor). A detailed analysis of the influence of that parameter on the solution of the model's system of ordinary differential equations is given and it is pointed out that some ingredients of the analysis might be useful for more general pharmacodynamic models. Numerical experiments are presented to illustrate the performance of related parameter estimation procedures based on least-squares minimization.

How to cite

top

Duintjer Tebbens, Jurjen, et al. "On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy." Applications of Mathematics 64.2 (2019): 253-277. <http://eudml.org/doc/294792>.

@article{DuintjerTebbens2019,
abstract = {A pharmacodynamic model introduced earlier in the literature for in silico prediction of rifampicin-induced CYP3A4 enzyme production is described and some aspects of the involved curve-fitting based parameter estimation are discussed. Validation with our own laboratory data shows that the quality of the fit is particularly sensitive with respect to an unknown parameter representing the concentration of the nuclear receptor PXR (pregnane X receptor). A detailed analysis of the influence of that parameter on the solution of the model's system of ordinary differential equations is given and it is pointed out that some ingredients of the analysis might be useful for more general pharmacodynamic models. Numerical experiments are presented to illustrate the performance of related parameter estimation procedures based on least-squares minimization.},
author = {Duintjer Tebbens, Jurjen, Matonoha, Ctirad, Matthios, Andreas, Papáček, Štěpán},
journal = {Applications of Mathematics},
keywords = {pharmacotherapy; pharmacodynamic modelling; constrained optimization; parameter estimation},
language = {eng},
number = {2},
pages = {253-277},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy},
url = {http://eudml.org/doc/294792},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Duintjer Tebbens, Jurjen
AU - Matonoha, Ctirad
AU - Matthios, Andreas
AU - Papáček, Štěpán
TI - On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 253
EP - 277
AB - A pharmacodynamic model introduced earlier in the literature for in silico prediction of rifampicin-induced CYP3A4 enzyme production is described and some aspects of the involved curve-fitting based parameter estimation are discussed. Validation with our own laboratory data shows that the quality of the fit is particularly sensitive with respect to an unknown parameter representing the concentration of the nuclear receptor PXR (pregnane X receptor). A detailed analysis of the influence of that parameter on the solution of the model's system of ordinary differential equations is given and it is pointed out that some ingredients of the analysis might be useful for more general pharmacodynamic models. Numerical experiments are presented to illustrate the performance of related parameter estimation procedures based on least-squares minimization.
LA - eng
KW - pharmacotherapy; pharmacodynamic modelling; constrained optimization; parameter estimation
UR - http://eudml.org/doc/294792
ER -

References

top
  1. D'Argenio, D. Z., Schumitzky, A., Wang, X., ADAPT 5 User's Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software, Biomedical Simulations Resource, Los Angeles (2009), Available at https://bmsr.usc.edu/software/adapt/users-guide/. 
  2. Dhillon, S., Kostrzewski, A., (eds.), Clinical Pharmacokinetics, Pharmaceutical Press, London (2006). (2006) 
  3. Tebbens, J. Duintjer, Azar, M., Friedmann, E., Lanzendörfer, M., Pávek, P., 10.3390/ijms19061785, Int. J. Mol. Sci. 19 (2018), 1785. (2018) DOI10.3390/ijms19061785
  4. Funahashi, A., Morohashi, M., Kitano, H., Tanimura, N., 10.1016/s1478-5382(03)02370-9, BIOSILICO 1 (2003), 159-162. (2003) DOI10.1016/s1478-5382(03)02370-9
  5. The GNU Fortran compiler, Available at http://gcc.gnu.org/fortran/. Software: https://swmath.org/software/00959. 
  6. Hindmarsh, A. C., 10.1109/mcs.1982.1103756, Control Systems Magazine 2 (1982), 24-30. (1982) DOI10.1109/mcs.1982.1103756
  7. Hindmarsh, A. C., ODEPACK, a systematized collection of ODE solvers, Scientific Computing 1982 R. S. Stepleman et al. IMACS Transactions on Scientific Computation I, North-Holland Publishing, Amsterdam (1983), 55-64. (1983) MR0751604
  8. Jones, H. M., Rowland-Yeo, K., 10.1038/psp.2013.41, CPT: Pharmacometrics & Systems Pharmacology 2 (2013), Article ID e63, 12 pages. (2013) DOI10.1038/psp.2013.41
  9. Luke, N. S., DeVito, M. J., Shah, I., El-Masri, H. A., 10.1007/s11538-010-9508-5, Bull. Math. Biol. 72 (2010), 1799-1819. (2010) Zbl1202.92029MR2728006DOI10.1007/s11538-010-9508-5
  10. Lukšan, L., Tůma, M., Matonoha, C., Vlček, J., Ramešová, N., Šiška, M., Hartman, J., UFO 2017. Interactive System for Universal Functional Optimization, Technical Report V-1252, Institute for Computer Science CAS, Praha, 2017. Available at http://www.cs.cas.cz/luksan/ufo.html. 
  11. Lunn, D. J., Best, N., Thomas, A., Wakefield, J., Spiegelhalter, D. J., 10.1023/A:1020206907668, J. Pharmacokinetics Pharmacodynamics 29 (2002), 271-307. (2002) DOI10.1023/A:1020206907668
  12. MATLAB, Mathworks, Inc., 2018. Available at https://www.mathworks.com/products/matlab.html. Software: https://swmath.org/software/00558. 
  13. Moler, C., Loan, C. Van, 10.1137/S00361445024180, SIAM Rev. 45 (2003), 3-49. (2003) Zbl1030.65029MR1981253DOI10.1137/S00361445024180
  14. Nelder, J. A., Mead, R., 10.1093/comjnl/7.4.308, Computer J. 4 (1965), 308-313. (1965) Zbl0229.65053MR3363409DOI10.1093/comjnl/7.4.308
  15. NONMEM 7.3, ICON, Inc., 1990-2016. Available at http://www.iconplc.com/innovation/nonmem/. Software: https://swmath.org/software/08344. 
  16. Petzold, L., 10.1137/0904010, SIAM J. Sci. Stat. Comput. 4 (1983), 136-148. (1983) Zbl0518.65051MR0689694DOI10.1137/0904010
  17. Shargel, L., Yu, A. B. C., Applied Biopharmaceutics & Pharmacokinetics, McGraw-Hill Education, New York (2016). (2016) 
  18. Simcyp simulator, Certara, 2012. Available at http://www.certara.com/software/. Software: https://swmath.org/software/23162. 
  19. Spruill, J. W., Wade, W. E., DiPiro, T. J., Blouin, A. R., Pruemer, M. J., Concepts in Clinical Pharmacokinetics, American Society of Health-System Pharmacists, Bethesda (2014). (2014) 
  20. Zhao, P., Rowland, M., Huang, S.-M., 10.1038/clpt.2012.68, Clinical Pharmacology & Therapeutics 92 (2012), 17-20. (2012) DOI10.1038/clpt.2012.68
  21. Zheng, Z., Stewart, P. S., 10.1128/aac.46.3.900-903.2002, Antimicrob. Agents Chemoter 46 (2002), 900-903. (2002) DOI10.1128/aac.46.3.900-903.2002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.