On an optimal setting of constant delays for the D-QSSA model reduction method applied to a class of chemical reaction networks
Ctirad Matonoha; Štěpán Papáček; Volodymyr Lynnyk
Applications of Mathematics (2022)
- Volume: 67, Issue: 6, page 831-857
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMatonoha, Ctirad, Papáček, Štěpán, and Lynnyk, Volodymyr. "On an optimal setting of constant delays for the D-QSSA model reduction method applied to a class of chemical reaction networks." Applications of Mathematics 67.6 (2022): 831-857. <http://eudml.org/doc/298520>.
@article{Matonoha2022,
abstract = {We develop and test a relatively simple enhancement of the classical model reduction method applied to a class of chemical networks with mass conservation properties. Both the methods, being (i) the standard quasi-steady-state approximation method, and (ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed by Vejchodský (2014), are extensively presented. Both theoretical and numerical issues related to the setting of delays are discussed. Namely, for one slightly modified variant of an enzyme-substrate reaction network (Michaelis-Menten kinetics), the comparison of the full non-reduced system behavior with respective variants of reduced model is presented and the results discussed. Finally, some future prospects related to further applications of the delayed quasi-steady-state approximation method are proposed.},
author = {Matonoha, Ctirad, Papáček, Štěpán, Lynnyk, Volodymyr},
journal = {Applications of Mathematics},
keywords = {reaction network; model reduction; singular perturbation; quasi-steady-state approximation; D-QSSA method; optimization},
language = {eng},
number = {6},
pages = {831-857},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an optimal setting of constant delays for the D-QSSA model reduction method applied to a class of chemical reaction networks},
url = {http://eudml.org/doc/298520},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Matonoha, Ctirad
AU - Papáček, Štěpán
AU - Lynnyk, Volodymyr
TI - On an optimal setting of constant delays for the D-QSSA model reduction method applied to a class of chemical reaction networks
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 6
SP - 831
EP - 857
AB - We develop and test a relatively simple enhancement of the classical model reduction method applied to a class of chemical networks with mass conservation properties. Both the methods, being (i) the standard quasi-steady-state approximation method, and (ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed by Vejchodský (2014), are extensively presented. Both theoretical and numerical issues related to the setting of delays are discussed. Namely, for one slightly modified variant of an enzyme-substrate reaction network (Michaelis-Menten kinetics), the comparison of the full non-reduced system behavior with respective variants of reduced model is presented and the results discussed. Finally, some future prospects related to further applications of the delayed quasi-steady-state approximation method are proposed.
LA - eng
KW - reaction network; model reduction; singular perturbation; quasi-steady-state approximation; D-QSSA method; optimization
UR - http://eudml.org/doc/298520
ER -
References
top- Bohl, E., Marek, I., 10.1007/978-3-0348-8181-4_12, Linear Operators and Matrices Operator Theory: Advances and Applications 130. Birkhäuser, Basel (2002), 153-170. (2002) Zbl1023.47052MR1902006DOI10.1007/978-3-0348-8181-4_12
- Bohl, E., Marek, I., 10.1007/s10492-005-0015-1, Appl. Math., Praha 50 (2005), 219-245. (2005) Zbl1099.34006MR2133728DOI10.1007/s10492-005-0015-1
- Briggs, G. E., Haldane, J. B. S., 10.1042/bj0190338, Biochem. J. 19 (1925), 338-339. (1925) DOI10.1042/bj0190338
- Tebbens, J. Duintjer, Matonoha, C., Matthios, A., Papáček, Š., 10.21136/AM.2019.0284-18, Appl. Math., Praha 64 (2019), 253-277. (2019) Zbl07088739MR3936970DOI10.21136/AM.2019.0284-18
- Eilertsen, J., Schnell, S., 10.1016/j.mbs.2020.108339, Math. Biosci. 325 (2020), Article ID 108339, 20 pages. (2020) Zbl1448.92093MR4110291DOI10.1016/j.mbs.2020.108339
- Flach, E. H., Schnell, S., 10.1049/ip-syb:20050104, IEE Proc. - Syst. Biol. 153 (2006), 187-191. (2006) DOI10.1049/ip-syb:20050104
- Härdin, H. M., Zagaris, A., Krab, K., Westerhoff, H. V., 10.1111/j.1742-4658.2009.07233.x, FEBS J. 276 (2009), 5491-5506. (2009) DOI10.1111/j.1742-4658.2009.07233.x
- Isidori, A., 10.1007/978-1-84628-615-5, Communications and Control Engineering Series. Springer, Berlin (1995). (1995) Zbl0878.93001MR1410988DOI10.1007/978-1-84628-615-5
- Khalil, H. K., Nonlinear Systems, Prentice Hall, Upper Saddle River (2002). (2002) Zbl1003.34002MR1201326
- Luke, N. S., DeVito, M. J., Shah, I., El-Masri, H. A., 10.1007/s11538-010-9508-5, Bull. Math. Biol. 72 (2010), 1799-1819. (2010) Zbl1202.92029MR2728006DOI10.1007/s11538-010-9508-5
- Lukšan, L., Tůma, M., Matonoha, C., Vlček, J., Ramešová, N., Šiška, M., Hartman, J., UFO 2017, Interactive System for Universal Functional Optimization Technical Report V-1252. Institute for Computer Science CAS, Praha (2017), Available at http://www.cs.cas.cz/luksan/ufo.html. (2017)
- Marek, I., 10.1007/978-3-642-02894-6_35, Positive Systems Lecture Notes in Control and Information Sciences 389. Springer, Berlin (2009), 359-367. (2009) Zbl1182.93110MR2596628DOI10.1007/978-3-642-02894-6_35
- Papáček, Š., Lynnyk, V., 10.1109/PC52310.2021.9447532, Proceedings of the 23rd International Conference on Process Control IEEE, Danvers (2021), 278-283. (2021) DOI10.1109/PC52310.2021.9447532
- Rehák, B., 10.1002/asjc.1507, Asian J. Control 19 (2017), 2226-2231. (2017) Zbl1386.93057MR3730209DOI10.1002/asjc.1507
- Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J., A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem, Kybernetika 45 (2009), 427-444. (2009) Zbl1165.93320MR2543132
- Schnell, S., 10.1111/febs.12564, FEBS J. 281 (2014), 464-472. (2014) DOI10.1111/febs.12564
- Segel, L. A., 10.1007/BF02460092, Bull. Math. Biol. 50 (1988), 579-593. (1988) Zbl0653.92006MR970614DOI10.1007/BF02460092
- Segel, L. A., Slemrod, M., 10.1137/1031091, SIAM Rev. 31 (1989), 446-477. (1989) Zbl0679.34066MR1012300DOI10.1137/1031091
- Smith, H., 10.1007/978-1-4419-7646-8, Texts in Applied Mathematics 57. Springer, New York (2011). (2011) Zbl1227.34001MR2724792DOI10.1007/978-1-4419-7646-8
- Snowden, T. J., Graaf, P. H. van der, Tindall, M. J., 10.1007/s11538-017-0277-2, Bull. Math. Biol. 79 (2017), 1449-1486. (2017) Zbl1372.92033MR3668670DOI10.1007/s11538-017-0277-2
- Vejchodský, T., 10.21136/MB.2014.144135, Math. Bohem. 139 (2014), 577-585. (2014) Zbl1349.92030MR3306848DOI10.21136/MB.2014.144135
- Vejchodský, T., Erban, R., Maini, P. K., Reduction of chemical systems by delayed quasi-steady state assumptions, Available at https://arxiv.org/abs/1406.4424 (2014), 26 pages. (2014)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.