A note on Dunford-Pettis like properties and complemented spaces of operators
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 2, page 207-222
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGhenciu, Ioana. "A note on Dunford-Pettis like properties and complemented spaces of operators." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 207-222. <http://eudml.org/doc/294799>.
@article{Ghenciu2018,
abstract = {Equivalent formulations of the Dunford-Pettis property of order $p$ ($\{DPP\}_p$), $1<p<\infty $, are studied. Let $L(X,Y)$, $W(X,Y)$, $K(X,Y)$, $U(X,Y)$, and $C_p(X,Y)$ denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and $p$-convergent operators from $X$ to $Y$. Classical results of Kalton are used to study the complementability of the spaces $W(X,Y)$ and $K(X,Y)$ in the space $C_p(X,Y)$, and of $C_p(X,Y)$ in $U(X,Y)$ and $L(X,Y)$.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Dunford-Pettis property of order $p$; $p$-convergent operator; complemented spaces of operators},
language = {eng},
number = {2},
pages = {207-222},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on Dunford-Pettis like properties and complemented spaces of operators},
url = {http://eudml.org/doc/294799},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Ghenciu, Ioana
TI - A note on Dunford-Pettis like properties and complemented spaces of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 207
EP - 222
AB - Equivalent formulations of the Dunford-Pettis property of order $p$ (${DPP}_p$), $1<p<\infty $, are studied. Let $L(X,Y)$, $W(X,Y)$, $K(X,Y)$, $U(X,Y)$, and $C_p(X,Y)$ denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and $p$-convergent operators from $X$ to $Y$. Classical results of Kalton are used to study the complementability of the spaces $W(X,Y)$ and $K(X,Y)$ in the space $C_p(X,Y)$, and of $C_p(X,Y)$ in $U(X,Y)$ and $L(X,Y)$.
LA - eng
KW - Dunford-Pettis property of order $p$; $p$-convergent operator; complemented spaces of operators
UR - http://eudml.org/doc/294799
ER -
References
top- Bahreini M., Bator E., Ghenciu I., 10.4153/CMB-2011-097-2, Canad. Math. Bull. 55 (2012), no. 3, 449–461. MR2957262DOI10.4153/CMB-2011-097-2
- Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
- Castillo J. M. F., Sanchez F., Dunford-Pettis like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR1245024
- Diestel J., A survey of results related to the Dunford-Pettis property, Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pp. 15–60. Zbl0571.46013MR0621850
- Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
- Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
- Diestel J., Uhl J. J. Jr., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl0521.46035MR0453964
- Drewnowski L., Emmanuele G., 10.1007/BF02850021, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. Zbl0689.46004MR1053378DOI10.1007/BF02850021
- Emmanuele G., 10.1016/0022-1236(91)90055-A, J. Funct. Anal. 99 (1991), no. 1, 125–130. MR1120917DOI10.1016/0022-1236(91)90055-A
- Emmanuele G., 10.1017/S0305004100075435, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331–335. MR1142753DOI10.1017/S0305004100075435
- Emmanuele G., John K., 10.1023/A:1022483919972, Czechoslovak Math. J. 47(122) (1997), no. 1, 19–32. Zbl0903.46006MR1435603DOI10.1023/A:1022483919972
- Feder M., On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), no. 2, 196–205. MR0575060
- Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
- Ghenciu I., The -Gelfand Phillips property in spaces of operators and Dunford-Pettis like sets, available at arXiv:1803.00351v1 [math.FA] (2018), 16 pages. MR2283818
- Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), no. 2, 311–324. MR2283818DOI10.4064/cm106-2-11
- Grothendieck A., 10.4153/CJM-1953-017-4, Canadian J. Math. 5 (1953), 129–173 (French). Zbl0050.10902MR0058866DOI10.4153/CJM-1953-017-4
- John K., On the uncomplemented subspace , Czechoslovak Math. J. 42(117) (1992), no. 1, 167–173. MR1152178
- Kalton N. J., 10.1007/BF01432152, Math. Ann. 208 (1974), 267–278. Zbl0266.47038MR0341154DOI10.1007/BF01432152
- Lohman R. H., 10.4153/CMB-1976-056-x, Canad. Math. Bull. 19 (1976), no. 3, 365–367. MR0430748DOI10.4153/CMB-1976-056-x
- Megginson R. E., 10.1007/978-1-4612-0603-3, Graduate Texts in Mathematics, 183, Springer, New York, 1998. Zbl0910.46008MR1650235DOI10.1007/978-1-4612-0603-3
- Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
- Salimi M., Moshtaghiun S. M., 10.15352/bjma/1313363004, Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR2792501DOI10.15352/bjma/1313363004
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.