A note on Dunford-Pettis like properties and complemented spaces of operators

Ioana Ghenciu

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 2, page 207-222
  • ISSN: 0010-2628

Abstract

top
Equivalent formulations of the Dunford-Pettis property of order p ( D P P p ), 1 < p < , are studied. Let L ( X , Y ) , W ( X , Y ) , K ( X , Y ) , U ( X , Y ) , and C p ( X , Y ) denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and p -convergent operators from X to Y . Classical results of Kalton are used to study the complementability of the spaces W ( X , Y ) and K ( X , Y ) in the space C p ( X , Y ) , and of C p ( X , Y ) in U ( X , Y ) and L ( X , Y ) .

How to cite

top

Ghenciu, Ioana. "A note on Dunford-Pettis like properties and complemented spaces of operators." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 207-222. <http://eudml.org/doc/294799>.

@article{Ghenciu2018,
abstract = {Equivalent formulations of the Dunford-Pettis property of order $p$ ($\{DPP\}_p$), $1<p<\infty $, are studied. Let $L(X,Y)$, $W(X,Y)$, $K(X,Y)$, $U(X,Y)$, and $C_p(X,Y)$ denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and $p$-convergent operators from $X$ to $Y$. Classical results of Kalton are used to study the complementability of the spaces $W(X,Y)$ and $K(X,Y)$ in the space $C_p(X,Y)$, and of $C_p(X,Y)$ in $U(X,Y)$ and $L(X,Y)$.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Dunford-Pettis property of order $p$; $p$-convergent operator; complemented spaces of operators},
language = {eng},
number = {2},
pages = {207-222},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on Dunford-Pettis like properties and complemented spaces of operators},
url = {http://eudml.org/doc/294799},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Ghenciu, Ioana
TI - A note on Dunford-Pettis like properties and complemented spaces of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 207
EP - 222
AB - Equivalent formulations of the Dunford-Pettis property of order $p$ (${DPP}_p$), $1<p<\infty $, are studied. Let $L(X,Y)$, $W(X,Y)$, $K(X,Y)$, $U(X,Y)$, and $C_p(X,Y)$ denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and $p$-convergent operators from $X$ to $Y$. Classical results of Kalton are used to study the complementability of the spaces $W(X,Y)$ and $K(X,Y)$ in the space $C_p(X,Y)$, and of $C_p(X,Y)$ in $U(X,Y)$ and $L(X,Y)$.
LA - eng
KW - Dunford-Pettis property of order $p$; $p$-convergent operator; complemented spaces of operators
UR - http://eudml.org/doc/294799
ER -

References

top
  1. Bahreini M., Bator E., Ghenciu I., 10.4153/CMB-2011-097-2, Canad. Math. Bull. 55 (2012), no. 3, 449–461. MR2957262DOI10.4153/CMB-2011-097-2
  2. Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
  3. Castillo J. M. F., Sanchez F., Dunford-Pettis like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR1245024
  4. Diestel J., A survey of results related to the Dunford-Pettis property, Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pp. 15–60. Zbl0571.46013MR0621850
  5. Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
  6. Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
  7. Diestel J., Uhl J. J. Jr., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl0521.46035MR0453964
  8. Drewnowski L., Emmanuele G., 10.1007/BF02850021, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. Zbl0689.46004MR1053378DOI10.1007/BF02850021
  9. Emmanuele G., 10.1016/0022-1236(91)90055-A, J. Funct. Anal. 99 (1991), no. 1, 125–130. MR1120917DOI10.1016/0022-1236(91)90055-A
  10. Emmanuele G., 10.1017/S0305004100075435, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331–335. MR1142753DOI10.1017/S0305004100075435
  11. Emmanuele G., John K., 10.1023/A:1022483919972, Czechoslovak Math. J. 47(122) (1997), no. 1, 19–32. Zbl0903.46006MR1435603DOI10.1023/A:1022483919972
  12. Feder M., On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), no. 2, 196–205. MR0575060
  13. Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
  14. Ghenciu I., The p -Gelfand Phillips property in spaces of operators and Dunford-Pettis like sets, available at arXiv:1803.00351v1 [math.FA] (2018), 16 pages. MR2283818
  15. Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), no. 2, 311–324. MR2283818DOI10.4064/cm106-2-11
  16. Grothendieck A., 10.4153/CJM-1953-017-4, Canadian J. Math. 5 (1953), 129–173 (French). Zbl0050.10902MR0058866DOI10.4153/CJM-1953-017-4
  17. John K., On the uncomplemented subspace K ( X , Y ) , Czechoslovak Math. J. 42(117) (1992), no. 1, 167–173. MR1152178
  18. Kalton N. J., 10.1007/BF01432152, Math. Ann. 208 (1974), 267–278. Zbl0266.47038MR0341154DOI10.1007/BF01432152
  19. Lohman R. H., 10.4153/CMB-1976-056-x, Canad. Math. Bull. 19 (1976), no. 3, 365–367. MR0430748DOI10.4153/CMB-1976-056-x
  20. Megginson R. E., 10.1007/978-1-4612-0603-3, Graduate Texts in Mathematics, 183, Springer, New York, 1998. Zbl0910.46008MR1650235DOI10.1007/978-1-4612-0603-3
  21. Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
  22. Salimi M., Moshtaghiun S. M., 10.15352/bjma/1313363004, Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR2792501DOI10.15352/bjma/1313363004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.