Sequentially Right Banach spaces of order
Mahdi Dehghani; Mohammad B. Dehghani; Mohammad S. Moshtaghioun
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 1, page 51-67
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDehghani, Mahdi, Dehghani, Mohammad B., and Moshtaghioun, Mohammad S.. "Sequentially Right Banach spaces of order $p$." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 51-67. <http://eudml.org/doc/297335>.
@article{Dehghani2020,
abstract = {We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order $p$, and those defined by the dual property, the sequentially Right$^*$ Banach spaces of order $p$ for $1\le p\le \infty $. These classes of Banach spaces are characterized by the notions of $L_p$-limited sets in the corresponding dual space and $R^*_p$ subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space $X$ and a reflexive Banach space $Y$ has the sequentially Right property of order $p$ when $X$ enjoys this property.},
author = {Dehghani, Mahdi, Dehghani, Mohammad B., Moshtaghioun, Mohammad S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Right topology; sequentially Right Banach space; pseudo weakly compact operator; Pełczyński’s property (V) of order $p$; limited $p$-converging operator; $p$-Gelfand–Phillips property; reciprocal Dunford–Pettis property of order $p$},
language = {eng},
number = {1},
pages = {51-67},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sequentially Right Banach spaces of order $p$},
url = {http://eudml.org/doc/297335},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Dehghani, Mahdi
AU - Dehghani, Mohammad B.
AU - Moshtaghioun, Mohammad S.
TI - Sequentially Right Banach spaces of order $p$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 51
EP - 67
AB - We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order $p$, and those defined by the dual property, the sequentially Right$^*$ Banach spaces of order $p$ for $1\le p\le \infty $. These classes of Banach spaces are characterized by the notions of $L_p$-limited sets in the corresponding dual space and $R^*_p$ subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space $X$ and a reflexive Banach space $Y$ has the sequentially Right property of order $p$ when $X$ enjoys this property.
LA - eng
KW - Right topology; sequentially Right Banach space; pseudo weakly compact operator; Pełczyński’s property (V) of order $p$; limited $p$-converging operator; $p$-Gelfand–Phillips property; reciprocal Dunford–Pettis property of order $p$
UR - http://eudml.org/doc/297335
ER -
References
top- Andrews K. T., 10.1007/BF01406706, Math. Ann. 241 (1979), no. 1, 35–41. MR0531148DOI10.1007/BF01406706
- Bator E., Lewis P., Ochoa J., 10.4064/cm-78-1-1-17, Colloq. Math. 78 (1998), no. 1, 1–17. Zbl0948.46008MR1658115DOI10.4064/cm-78-1-1-17
- Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
- Castillo J. M. F., -converging operators and weakly--compact operators in -spaces, Actas del II Congreso de Análisis Funcional, Jarandilla de la Vera, Cáceres, June 1990, Extracta Math. (1990), 46–54. MR1125690
- Castillo J. M. F., Sanchez F., Dunford–Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid. 6 (1993), no. 1, 43–59. MR1245024
- Castillo J. M. F., Sánchez F., 10.1006/jmaa.1994.1246, J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. MR1283055DOI10.1006/jmaa.1994.1246
- Cilia R., Emmanuele G., 10.4064/cm6184-12-2015, Colloq. Math. 146 (2017), no. 2, 239–252. MR3622375DOI10.4064/cm6184-12-2015
- Chen D., Chávez-Domínguez J. A., Li L., 10.1016/j.jmaa.2018.01.051, J. Math. Anal. Appl. 461 (2018), no. 2, 1053–1066. MR3765477DOI10.1016/j.jmaa.2018.01.051
- Defant A., Floret K., Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993. MR1209438
- Dehghani M. B., Moshtaghioun S. M., 10.1215/20088752-2017-0033, Ann. Funct. Anal. 9 (2018), no. 1, 123–136. MR3758748DOI10.1215/20088752-2017-0033
- Dehghani M. B., Moshtaghioun S. M., Dehghani M., On the limited -Schur property of some operator spaces, Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. MR3758748
- Delgado J. M., Pi neiro C., 10.1016/j.jmaa.2013.08.045, J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. MR3111861DOI10.1016/j.jmaa.2013.08.045
- Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
- Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
- Emmanuele G., A dual characterization of Banach spaces not containing , Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR0861172
- Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
- Ghenciu I., Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products, Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR3390279
- Ghenciu I., 10.1007/s00605-016-0884-2, Monatsh. Math. 181 (2016), no. 3, 609–628. MR3552802DOI10.1007/s00605-016-0884-2
- Ghenciu I., A note on some isomorphic properties in projective tensor products, Extracta Math. 32 (2017), no. 1, 1–24. MR3726522
- Ghenciu I., A note on Dunford–Pettis like properties and complemented spaces of operators, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 207–222. MR3815686
- Ghenciu I., 10.1007/s10474-018-0836-5, Acta Math. Hungar. 155 (2018), no. 2, 439–457. MR3831309DOI10.1007/s10474-018-0836-5
- Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), no. 2, 311–324. MR2283818DOI10.4064/cm106-2-11
- Grothedieck A., 10.4153/CJM-1953-017-4, Canad. J. Math. 5 (1953), 129–173 (French). MR0058866DOI10.4153/CJM-1953-017-4
- Kačena M., On sequentially right Banach spaces, Extracta Math. 26 (2011), no. 1, 1–27. MR2908388
- Karn A. K., Sinha D. P., 10.1017/S0017089513000360, Glasg. Math. J. 56 (2014), no. 2, 427–437. MR3187909DOI10.1017/S0017089513000360
- Li L., Chen D., Chávez-Domínguez J. A., 10.1002/mana.201600335, Math. Nachr. 291 (2018), no. 2–3, 420–442. MR3767145DOI10.1002/mana.201600335
- Pełczyński A., On Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR0149295
- Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K., 10.1016/j.jmaa.2006.02.066, J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR2270063DOI10.1016/j.jmaa.2006.02.066
- Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K., Weakly compact operators and the strong topology for a Banach space, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 6, 1249–1267. MR2747954
- Read C. J., 10.4064/sm-132-3-203-226, Studia Math. 132 (1999), no. 3, 203–226. MR1669678DOI10.4064/sm-132-3-203-226
- Ryan R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer, London, 2002. Zbl1090.46001MR1888309
- Salimi M., Moshtaghioun S. M., 10.15352/bjma/1313363004, Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR2792501DOI10.15352/bjma/1313363004
- Salimi M., Moshtaghioun S. M., A new class of Banach spaces and its relation with some geometric properties of Banach spaces, Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages. MR2910729
- Zeekoei E. D., Fourie J. H., 10.1007/s10114-017-7172-5, Acta. Math. Sin. (Engl. Ser.) 34 (2018), no. 5, 873–890. MR3785686DOI10.1007/s10114-017-7172-5
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.