Sequentially Right Banach spaces of order p

Mahdi Dehghani; Mohammad B. Dehghani; Mohammad S. Moshtaghioun

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 1, page 51-67
  • ISSN: 0010-2628

Abstract

top
We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach space Y has the sequentially Right property of order p when X enjoys this property.

How to cite

top

Dehghani, Mahdi, Dehghani, Mohammad B., and Moshtaghioun, Mohammad S.. "Sequentially Right Banach spaces of order $p$." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 51-67. <http://eudml.org/doc/297335>.

@article{Dehghani2020,
abstract = {We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order $p$, and those defined by the dual property, the sequentially Right$^*$ Banach spaces of order $p$ for $1\le p\le \infty $. These classes of Banach spaces are characterized by the notions of $L_p$-limited sets in the corresponding dual space and $R^*_p$ subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space $X$ and a reflexive Banach space $Y$ has the sequentially Right property of order $p$ when $X$ enjoys this property.},
author = {Dehghani, Mahdi, Dehghani, Mohammad B., Moshtaghioun, Mohammad S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Right topology; sequentially Right Banach space; pseudo weakly compact operator; Pełczyński’s property (V) of order $p$; limited $p$-converging operator; $p$-Gelfand–Phillips property; reciprocal Dunford–Pettis property of order $p$},
language = {eng},
number = {1},
pages = {51-67},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sequentially Right Banach spaces of order $p$},
url = {http://eudml.org/doc/297335},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Dehghani, Mahdi
AU - Dehghani, Mohammad B.
AU - Moshtaghioun, Mohammad S.
TI - Sequentially Right Banach spaces of order $p$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 51
EP - 67
AB - We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order $p$, and those defined by the dual property, the sequentially Right$^*$ Banach spaces of order $p$ for $1\le p\le \infty $. These classes of Banach spaces are characterized by the notions of $L_p$-limited sets in the corresponding dual space and $R^*_p$ subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space $X$ and a reflexive Banach space $Y$ has the sequentially Right property of order $p$ when $X$ enjoys this property.
LA - eng
KW - Right topology; sequentially Right Banach space; pseudo weakly compact operator; Pełczyński’s property (V) of order $p$; limited $p$-converging operator; $p$-Gelfand–Phillips property; reciprocal Dunford–Pettis property of order $p$
UR - http://eudml.org/doc/297335
ER -

References

top
  1. Andrews K. T., 10.1007/BF01406706, Math. Ann. 241 (1979), no. 1, 35–41. MR0531148DOI10.1007/BF01406706
  2. Bator E., Lewis P., Ochoa J., 10.4064/cm-78-1-1-17, Colloq. Math. 78 (1998), no. 1, 1–17. Zbl0948.46008MR1658115DOI10.4064/cm-78-1-1-17
  3. Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
  4. Castillo J. M. F., p -converging operators and weakly- p -compact operators in L p -spaces, Actas del II Congreso de Análisis Funcional, Jarandilla de la Vera, Cáceres, June 1990, Extracta Math. (1990), 46–54. MR1125690
  5. Castillo J. M. F., Sanchez F., Dunford–Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid. 6 (1993), no. 1, 43–59. MR1245024
  6. Castillo J. M. F., Sánchez F., 10.1006/jmaa.1994.1246, J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. MR1283055DOI10.1006/jmaa.1994.1246
  7. Cilia R., Emmanuele G., 10.4064/cm6184-12-2015, Colloq. Math. 146 (2017), no. 2, 239–252. MR3622375DOI10.4064/cm6184-12-2015
  8. Chen D., Chávez-Domínguez J. A., Li L., 10.1016/j.jmaa.2018.01.051, J. Math. Anal. Appl. 461 (2018), no. 2, 1053–1066. MR3765477DOI10.1016/j.jmaa.2018.01.051
  9. Defant A., Floret K., Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993. MR1209438
  10. Dehghani M. B., Moshtaghioun S. M., 10.1215/20088752-2017-0033, Ann. Funct. Anal. 9 (2018), no. 1, 123–136. MR3758748DOI10.1215/20088752-2017-0033
  11. Dehghani M. B., Moshtaghioun S. M., Dehghani M., On the limited p -Schur property of some operator spaces, Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. MR3758748
  12. Delgado J. M., Pi neiro C., 10.1016/j.jmaa.2013.08.045, J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. MR3111861DOI10.1016/j.jmaa.2013.08.045
  13. Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
  14. Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
  15. Emmanuele G., A dual characterization of Banach spaces not containing 1 , Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR0861172
  16. Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
  17. Ghenciu I., Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products, Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR3390279
  18. Ghenciu I., 10.1007/s00605-016-0884-2, Monatsh. Math. 181 (2016), no. 3, 609–628. MR3552802DOI10.1007/s00605-016-0884-2
  19. Ghenciu I., A note on some isomorphic properties in projective tensor products, Extracta Math. 32 (2017), no. 1, 1–24. MR3726522
  20. Ghenciu I., A note on Dunford–Pettis like properties and complemented spaces of operators, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 207–222. MR3815686
  21. Ghenciu I., 10.1007/s10474-018-0836-5, Acta Math. Hungar. 155 (2018), no. 2, 439–457. MR3831309DOI10.1007/s10474-018-0836-5
  22. Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), no. 2, 311–324. MR2283818DOI10.4064/cm106-2-11
  23. Grothedieck A., 10.4153/CJM-1953-017-4, Canad. J. Math. 5 (1953), 129–173 (French). MR0058866DOI10.4153/CJM-1953-017-4
  24. Kačena M., On sequentially right Banach spaces, Extracta Math. 26 (2011), no. 1, 1–27. MR2908388
  25. Karn A. K., Sinha D. P., 10.1017/S0017089513000360, Glasg. Math. J. 56 (2014), no. 2, 427–437. MR3187909DOI10.1017/S0017089513000360
  26. Li L., Chen D., Chávez-Domínguez J. A., 10.1002/mana.201600335, Math. Nachr. 291 (2018), no. 2–3, 420–442. MR3767145DOI10.1002/mana.201600335
  27. Pełczyński A., On Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR0149295
  28. Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K., 10.1016/j.jmaa.2006.02.066, J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR2270063DOI10.1016/j.jmaa.2006.02.066
  29. Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K., Weakly compact operators and the strong * topology for a Banach space, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 6, 1249–1267. MR2747954
  30. Read C. J., 10.4064/sm-132-3-203-226, Studia Math. 132 (1999), no. 3, 203–226. MR1669678DOI10.4064/sm-132-3-203-226
  31. Ryan R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer, London, 2002. Zbl1090.46001MR1888309
  32. Salimi M., Moshtaghioun S. M., 10.15352/bjma/1313363004, Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR2792501DOI10.15352/bjma/1313363004
  33. Salimi M., Moshtaghioun S. M., A new class of Banach spaces and its relation with some geometric properties of Banach spaces, Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages. MR2910729
  34. Zeekoei E. D., Fourie J. H., 10.1007/s10114-017-7172-5, Acta. Math. Sin. (Engl. Ser.) 34 (2018), no. 5, 873–890. MR3785686DOI10.1007/s10114-017-7172-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.