Weighted generalization of the Ramadanov's theorem and further considerations

Zbigniew Pasternak-Winiarski; Paweł Wójcicki

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 829-842
  • ISSN: 0011-4642

Abstract

top
We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space N , and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this property, which will give a characterization of the domains, for which the inverse of the Ramadanov’s theorem holds.

How to cite

top

Pasternak-Winiarski, Zbigniew, and Wójcicki, Paweł. "Weighted generalization of the Ramadanov's theorem and further considerations." Czechoslovak Mathematical Journal 68.3 (2018): 829-842. <http://eudml.org/doc/294802>.

@article{Pasternak2018,
abstract = {We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space $\mathbb \{C\}^N$, and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this property, which will give a characterization of the domains, for which the inverse of the Ramadanov’s theorem holds.},
author = {Pasternak-Winiarski, Zbigniew, Wójcicki, Paweł},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted Bergman kernel; admissible weight; sequence of domains},
language = {eng},
number = {3},
pages = {829-842},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted generalization of the Ramadanov's theorem and further considerations},
url = {http://eudml.org/doc/294802},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Pasternak-Winiarski, Zbigniew
AU - Wójcicki, Paweł
TI - Weighted generalization of the Ramadanov's theorem and further considerations
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 829
EP - 842
AB - We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space $\mathbb {C}^N$, and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this property, which will give a characterization of the domains, for which the inverse of the Ramadanov’s theorem holds.
LA - eng
KW - weighted Bergman kernel; admissible weight; sequence of domains
UR - http://eudml.org/doc/294802
ER -

References

top
  1. Aronszajn, N., 10.2307/1990404, Trans. Am. Math. Soc. 68 (1950), 337-404. (1950) Zbl0037.20701MR0051437DOI10.2307/1990404
  2. Bergman, S., 10.1090/surv/005, Mathematical Surveys 5, American Mathematical Society, Providence (1970). (1970) Zbl0208.34302MR0507701DOI10.1090/surv/005
  3. Boas, H. P., 10.2307/2046535, Proc. Am. Math. Soc. 97 (1986), 374-375. (1986) Zbl0596.32032MR0835902DOI10.2307/2046535
  4. Engliš, M., 10.1007/s002200200634, Commun. Math. Phys. 227 (2002), 211-241. (2002) Zbl1010.32002MR1903645DOI10.1007/s002200200634
  5. Engliš, M., 10.1016/j.jfa.2008.06.026, J. Funct. Anal. 255 (2008), 1419-1457. (2008) Zbl1155.32001MR2565714DOI10.1016/j.jfa.2008.06.026
  6. Forelli, F., Rudin, W., 10.1512/iumj.1974.24.24044, Indiana Univ. Math. J. 24 (1974), 593-602. (1974) Zbl0297.47041MR0357866DOI10.1512/iumj.1974.24.24044
  7. Jacobson, R. L., Weighted Bergman Kernel Functions and the Lu Qi-keng Problem. Thesis (Ph.D.), A&M University, Texas (2012). (2012) MR3068007
  8. Jarnicki, M., Pflug, P., 10.1515/9783110253863, De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). (2013) Zbl1273.32002MR3114789DOI10.1515/9783110253863
  9. Krantz, S. G., 10.1090/chel/340, American Mathematical Society, Providence (2001). (2001) Zbl1087.32001MR1846625DOI10.1090/chel/340
  10. Krantz, S. G., 10.1007/978-1-4614-7924-6, Graduate Texts in Mathematics 268, Springer, New York (2013). (2013) Zbl1281.32004MR3114665DOI10.1007/978-1-4614-7924-6
  11. Ligocka, E., 10.4064/sm-94-3-257-272, Stud. Math. 94 (1989), 257-272. (1989) Zbl0688.32020MR1019793DOI10.4064/sm-94-3-257-272
  12. Odzijewicz, A., 10.1007/BF01229456, Commun. Math. Phys. 114 (1988), 577-597. (1988) Zbl0645.53044MR0929131DOI10.1007/BF01229456
  13. Pasternak-Winiarski, Z., 10.1016/0022-1236(90)90030-O, J. Funct. Anal. 94 (1990), 110-134. (1990) Zbl0739.46010MR1077547DOI10.1016/0022-1236(90)90030-O
  14. Pasternak-Winiarski, Z., 10.1155/S0161171292000012, Int. J. Math. Math. Sci. 15 (1992), 1-14. (1992) Zbl0749.32019MR1143923DOI10.1155/S0161171292000012
  15. Ramadanov, I., Sur une propriété de la fonction de Bergman, C. R. Acad. Bulg. Sci. 20 (1967), 759-762 French. (1967) Zbl0206.09002MR0226042
  16. Shabat, B. V., 10.1090/mmono/110, Translations of Mathematical Monographs 110, American Mathematical Society, Providence (1992). (1992) Zbl0799.32001MR1192135DOI10.1090/mmono/110
  17. Skwarczyński, M., Biholomorphic invariants related to the Bergman function, Diss. Math. 173 (1980), 59 pages. (1980) Zbl0443.32014MR0575756
  18. Skwarczyński, M., Iwiński, T., The convergence of Bergman functions for a decreasing sequence of domains, Approximation Theory. Proc. Conf. Poznan 1972 Z. Ciesielski, J. Musielak D. Reidel, Dordrecht (1975), 117-120. (1975) Zbl0328.30005MR0450534
  19. Skwarczyński, M., Mazur, T., Wstepne twierdzenia teorii funkcji wielu zmiennych zespolonych, Wydawnictwo Krzysztof Biesaga, Warszawa (2001), Polish. (2001) 
  20. Wójcicki, P. M., Weighted Bergman kernel function, admissible weights and the Ramadanov theorem, Mat. Stud. 42 (2014), 160-164. (2014) Zbl1327.32005MR3381259

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.