Disturbance observer-based second order sliding mode attitude tracking control for flexible spacecraft

Chutiphon Pukdeboon; Anuchit Jitpattanakul

Kybernetika (2017)

  • Volume: 53, Issue: 4, page 653-678
  • ISSN: 0023-5954

Abstract

top
This paper presents a composite controller that combines nonlinear disturbance observer and second order sliding mode controller for attitude tracking of flexible spacecraft. First, a new nonsingular sliding surface is introduced. Then, a second order sliding mode attitude controller is designed to achieve high-precision tracking performance. An extended state observer is also developed to estimate the total disturbance torque consisting of environmental disturbances, system uncertainties and flexible vibrations. The estimated result is used as feed-forward compensation. Although unknown bounded disturbances, inertia uncertainties and the coupling effect of flexible modes are taken into account, the resulting control method offers robustness and finite time convergence of attitude maneuver errors. Finite-time stability for the closed-loop system is rigorously proved using the Lyapunov stability theory. Simulation results are presented to demonstrate the effectiveness and robustness of the proposed control scheme.

How to cite

top

Pukdeboon, Chutiphon, and Jitpattanakul, Anuchit. "Disturbance observer-based second order sliding mode attitude tracking control for flexible spacecraft." Kybernetika 53.4 (2017): 653-678. <http://eudml.org/doc/294826>.

@article{Pukdeboon2017,
abstract = {This paper presents a composite controller that combines nonlinear disturbance observer and second order sliding mode controller for attitude tracking of flexible spacecraft. First, a new nonsingular sliding surface is introduced. Then, a second order sliding mode attitude controller is designed to achieve high-precision tracking performance. An extended state observer is also developed to estimate the total disturbance torque consisting of environmental disturbances, system uncertainties and flexible vibrations. The estimated result is used as feed-forward compensation. Although unknown bounded disturbances, inertia uncertainties and the coupling effect of flexible modes are taken into account, the resulting control method offers robustness and finite time convergence of attitude maneuver errors. Finite-time stability for the closed-loop system is rigorously proved using the Lyapunov stability theory. Simulation results are presented to demonstrate the effectiveness and robustness of the proposed control scheme.},
author = {Pukdeboon, Chutiphon, Jitpattanakul, Anuchit},
journal = {Kybernetika},
keywords = {second order sliding mode control; flexible spacecraft; extended state observer; finite-time convergence},
language = {eng},
number = {4},
pages = {653-678},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Disturbance observer-based second order sliding mode attitude tracking control for flexible spacecraft},
url = {http://eudml.org/doc/294826},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Pukdeboon, Chutiphon
AU - Jitpattanakul, Anuchit
TI - Disturbance observer-based second order sliding mode attitude tracking control for flexible spacecraft
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 4
SP - 653
EP - 678
AB - This paper presents a composite controller that combines nonlinear disturbance observer and second order sliding mode controller for attitude tracking of flexible spacecraft. First, a new nonsingular sliding surface is introduced. Then, a second order sliding mode attitude controller is designed to achieve high-precision tracking performance. An extended state observer is also developed to estimate the total disturbance torque consisting of environmental disturbances, system uncertainties and flexible vibrations. The estimated result is used as feed-forward compensation. Although unknown bounded disturbances, inertia uncertainties and the coupling effect of flexible modes are taken into account, the resulting control method offers robustness and finite time convergence of attitude maneuver errors. Finite-time stability for the closed-loop system is rigorously proved using the Lyapunov stability theory. Simulation results are presented to demonstrate the effectiveness and robustness of the proposed control scheme.
LA - eng
KW - second order sliding mode control; flexible spacecraft; extended state observer; finite-time convergence
UR - http://eudml.org/doc/294826
ER -

References

top
  1. Bang, H., Ha, C.-K., Kim, J. H., 10.1016/j.actaastro.2005.04.009, Acta Astronautica 57 (2005), 841-850. DOI10.1016/j.actaastro.2005.04.009
  2. Bhat, S., Bernstein, D., 10.1137/s0363012997321358, SIAM J. Control. Optim. 38 (2000), 751-766. MR1756893DOI10.1137/s0363012997321358
  3. Chen, Z., Huang, J., 10.1109/tac.2008.2008350, IEEE Trans. Automat. Control 54 (2009), 600-605. MR2191553DOI10.1109/tac.2008.2008350
  4. Chen, Z., Huang, J., 10.1002/rnc.2983, Int. J. Robust Nonlinear Control 16 (2014), 2231-2242. MR3271990DOI10.1002/rnc.2983
  5. Davila, J., Fridman, L., Levant, A., 10.1109/tac.2005.858636, IEEE Trans. Automat. Control 50 (2005), 1785-1789. MR2182725DOI10.1109/tac.2005.858636
  6. Gennaro, S. Di, 10.1023/a:1022106118182, J. Optim. Theory Appl. 116 (2003), 41-60. MR1961027DOI10.1023/a:1022106118182
  7. Ding, S., Zheng, W. X., 10.1109/taes.2014.120779, IEEE Trans. Aerosp. Electron. Syst 50 (2014), 1163-1181. DOI10.1109/taes.2014.120779
  8. Du, H., Li, S., Qian, C., 10.1109/tac.2011.2159419, IEEE Trans. Automat. Control 56 (2011), 2711-2717. MR2884015DOI10.1109/tac.2011.2159419
  9. Erdong, J., Zhaowei, S., 10.1016/j.ijnonlinmec.2009.12.008, Int. J. Non-Linear Mech. 45 (2010), 348-356. DOI10.1016/j.ijnonlinmec.2009.12.008
  10. Feng, Y., Yu, X., Man, Z., 10.1016/s0005-1098(02)00147-4, Automatica 38 (2002), 2159-2167. MR2134882DOI10.1016/s0005-1098(02)00147-4
  11. Hu, Q., 10.1177/0142331210394033, Trans. Inst. Measurement and Control 34 (2012), 436-447. DOI10.1177/0142331210394033
  12. Hu, Q., Jiang, B., Friswell, M., 10.2514/1.g000153, J. Guid. Control Dyn. 37 (2014), 1914-1929. DOI10.2514/1.g000153
  13. Hu, Q., Wang, Z., Gao, H., 10.1109/taes.2008.4560203, IEEE Trans. Aerosp. Electron. Syst. 44 (2008), 503-519. DOI10.1109/taes.2008.4560203
  14. Jiang, Y., Hu, Q., Ma, G., 10.1016/j.isatra.2009.08.003, ISA Trans. 49 (2010), 57-69. DOI10.1016/j.isatra.2009.08.003
  15. Levant, A., 10.1080/00207179308923053, Int. J. Control 58 (1993), 1247-1263. MR1250057DOI10.1080/00207179308923053
  16. Li, B., Hu, Q., Ma, G., 10.1016/j.ast.2015.12.031, Aerosp. Sci. Technol. 40 (2016), 173-182. DOI10.1016/j.ast.2015.12.031
  17. Li, J., Pan, Y., Kumar, K. D., 10.2514/1.55747, J. Guid. Control Dyn. 35 (2015), 309-316. DOI10.2514/1.55747
  18. Li, S. H., Wang, Z., Fei, S. M., 10.1016/j.ast.2010.11.005, Aerosp. Sci. Technol. 15 (2011), 193-195. DOI10.1016/j.ast.2010.11.005
  19. Luo, W., Chung, Y. C., Ling, K. V., 10.1109/tac.2005.858694, IEEE Trans. Automat. Control 50 (2005), 1639-1654. MR2182713DOI10.1109/tac.2005.858694
  20. Man, Z. H., Paplinski, A. P., Wu, H. R., 10.1109/9.362847, IEEE Trans. Automat. Control 39 (1994), 2464-2469. MR1337572DOI10.1109/9.362847
  21. Moreno, J. A., 10.1016/j.jfranklin.2013.09.019, J. Franklin Inst. 351 (2014), 1902-1919. MR3182704DOI10.1016/j.jfranklin.2013.09.019
  22. Moulay, E., Perruquetti, W., 10.1016/j.jmaa.2005.11.046, J. Math. Anal. Appl. 323 (2006), 1430-1443. MR2260193DOI10.1016/j.jmaa.2005.11.046
  23. Pukdeboon, C., Kumam, P., 10.1016/j.jmaa.2005.11.046, Aerosp. Sci. Technol. 43 (2015), 329-342. DOI10.1016/j.jmaa.2005.11.046
  24. Pukdeboon, C., Siricharuanun, P., 10.1007/s12555-013-0247-x, Int. J. Control Automat. Syst. 12 (2014), 530-540. MR3080136DOI10.1007/s12555-013-0247-x
  25. Pukdeboon, C., Zinober, A. S. I., Thein, M.-W. L., 10.1109/tie.2009.2030215, IEEE Trans. Ind. Electron. 57 (2010), 1436-1444. DOI10.1109/tie.2009.2030215
  26. Shtessel, Y. B., Shkolnikov, I. A, Levant, A., 10.1016/j.automatica.2007.01.008, Automatica 43 (2007), 1470-1476. MR2320533DOI10.1016/j.automatica.2007.01.008
  27. Song, Z., Li, H., Sun, K., 10.1016/j.isatra.2013.08.008, ISA Trans. 53 (2014), 117-124. DOI10.1016/j.isatra.2013.08.008
  28. Tiwari, P. M., Janardhanan, S., Nabi, M. un, 10.1016/j.ast.2014.11.017, Aerosp. Sci. Technol. 42 (2015), 50-57. DOI10.1016/j.ast.2014.11.017
  29. Utkin, V., Sliding Modes in Control and Optimization., Springer-Verlag, Berlin 1992. Zbl0748.93044MR1295845
  30. Wu, S., Radice, G., Sun, Z., 10.1061/(asce)as.1943-5525.0000247, J. Aerosp. Engrg. 27 (2014), 185-190. DOI10.1061/(asce)as.1943-5525.0000247
  31. Wu, Y., Yu, X., Man, Z., 10.1016/s0167-6911(98)00036-x, Syst. Control Lett. 34 (1998), 281-288. MR1639041DOI10.1016/s0167-6911(98)00036-x
  32. Xia, Y., Zhu, Z., Fu, M., Wang, S., 10.1109/tie.2010.2046611, IEEE Trans. Ind. Electron. 58 (2011), 647-659. DOI10.1109/tie.2010.2046611
  33. Yu, S., Yu, X., Shirinzadeh, B., Man, Z., 10.1109/tie.2010.2046611, Automatica 41 (2005), 1957-1964. MR2168660DOI10.1109/tie.2010.2046611
  34. Zhao, D., Li, S., Gao, F., 10.1080/00207170902769928, Int. J. Control 82 (2009), 1804-1813. MR2567229DOI10.1080/00207170902769928
  35. Zhong, C. X., Guo, Y., Yu, Z., Wang, L., Chen, Q. W., , Trans. Institute of Measurement and Control 38 (2016), 2, 240-249. MR3571486DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.