Stability of ALE space-time discontinuous Galerkin method
Vlasák, Miloslav; Balázsová, Monika; Feistauer, Miloslav
- Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 237-246
Access Full Article
topAbstract
topHow to cite
topVlasák, Miloslav, Balázsová, Monika, and Feistauer, Miloslav. "Stability of ALE space-time discontinuous Galerkin method." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 237-246. <http://eudml.org/doc/294948>.
@inProceedings{Vlasák2017,
abstract = {We assume the heat equation in a time dependent domain, where the evolution of the domain is described by a given mapping. The problem is discretized by the discontinuous Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian (ALE) method. The sketch of the proof of the stability of the method is shown.},
author = {Vlasák, Miloslav, Balázsová, Monika, Feistauer, Miloslav},
booktitle = {Proceedings of Equadiff 14},
keywords = {ALE formulation, discontinuous Galerkin method, discrete characteristic function, stability},
location = {Bratislava},
pages = {237-246},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Stability of ALE space-time discontinuous Galerkin method},
url = {http://eudml.org/doc/294948},
year = {2017},
}
TY - CLSWK
AU - Vlasák, Miloslav
AU - Balázsová, Monika
AU - Feistauer, Miloslav
TI - Stability of ALE space-time discontinuous Galerkin method
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 237
EP - 246
AB - We assume the heat equation in a time dependent domain, where the evolution of the domain is described by a given mapping. The problem is discretized by the discontinuous Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian (ALE) method. The sketch of the proof of the stability of the method is shown.
KW - ALE formulation, discontinuous Galerkin method, discrete characteristic function, stability
UR - http://eudml.org/doc/294948
ER -
References
top- Arnold, D. N., Brezzi, F., Cockburn, B., HASH(0x22e2088), Marini., L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, . SIAM J. Numer. Anal., 39(5), 1749–1779, 2002. MR1885715
- Balázsová, M., HASH(0x22f8290), Feistauer., M., On the stability of the space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains, . Appl. Math., 60, 501–526, 2015. MR3396478
- Balázsová, M., Feistauer, M., HASH(0x22f8cb0), Vlasák., M., Stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains, . (in preparation). MR3396478
- Boffi, D., Gastaldi, L., and, Heltai., L., Numerical stability of the finite element immersed boundary method, . Math. Models Methods Appl. Sci., 17, 1479–1505, 2007. MR2359913
- Bonito, A., Kyza, I., and, Nochetto., R. H., Time-discrete higher-order ALE formulations: Stability, . SIAM J. Numer. Anal., 51(1), 577–604, 2013. MR3033024
- Bonito, A., Kyza, I., and, Nochetto., R. H., Time-discrete higher order ALE formulations: a priori error analysis, . Numer. Math., 125, 225–257, 2013. MR3101828
- Česenek, J., Feistauer, M., Horáček, J., Kučera, V., HASH(0x22ffd00), Prokopová., J., Simulation of compressible viscous flow in time-dependent domains, . Appl. Math. Comput., 219, 7139–7150, 2013. MR3030556
- Česenek, J., Feistauer, M., HASH(0x2301ab8), Kosík., A., DGFEM for the analysis of airfoil vibrations induced by compressible flow, . Z. Angew. Math. Mech., 93 No. 6-7, 387–402, 2013. MR3069914
- Chrysafinos, K., HASH(0x23023b8), Walkington., N. J., Error estimates for the discontinuous Galerkin methods for parabolic equations, . SIAM J. Numer. Anal., 44, 349–366, 2006. MR2217386
- Cockburn, B., Karniadakis, G. E., HASH(0x2306760), Shu., C.-W., Discontinuous Galerkin methods, . In Lecture Notes in Computational Science and Engineering 11. Springer, Berlin, 2000. MR1842160
- Dolejší, V., Feistauer., M., Discontinuous Galerkin method, Analysis and applications to compressible flow, . Cham: Springer, 2015. MR3363720
- Ehle., B. L., On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems, . Research report CSRR 2010, Dept. AACS, Univ. of Waterloo, Ontario, Canada, 1969. MR2716012
- Formaggia, L., HASH(0x230ae50), Nobile., F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, . East-West J. Numer. Math., 7(2), 105–131, 1999. MR1699243
- Gastaldi., L., A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements, . East-West J. Numer. Math., 9(2), 123–156, 2001. MR1836870
- Guillo, A., HASH(0x230ece0), Soulé., J. L., La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation, . R.A.I.R.O., R-3, 17–44, 1969. MR0280008
- Hairer, E., Norsett, S. P., HASH(0x230f700), Wanner., G., Solving ordinary differential equations I, Nonstiff problems, . Number 8 in Springer Series in Computational Mathematics. Springer Verlag, 2000. MR1227985
- Hairer, E., Wanner., G., Solving ordinary differential equations II, Stiff and differential algebraic problems, . Springer Verlag, 2002. MR1439506
- Hirt, C. W., Amsdem, A. A., HASH(0x2311730), Cook., J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, . J. Comput. Phys., 135(2), 198–216, 1997. MR1486272
- Hughes, T. J. R., Liu, W. K., HASH(0x2314108), Zimmermann., T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, . Comput. Methods Appl. Mech. Eng., 29(3), 329–349, 1981. MR0659925
- Hulme., B. L., One step piecewise polynomial Galerkin methods for initial value problems, . Math. Comp., 26, 415–424, 1972. MR0321301
- Khadra, K., Angot, P., Parneix, S., HASH(0x23180b8), Caltagirone., J.-P., Fictitious domain approach for numerical modelling of Navier-Stokes equations, . Int. J. Numer. Methods Fluids, 34(8), 651–684, 2000.
- Kosík, A., Feistauer, M., Hadrava, M., HASH(0x231a290), Horáček., J., Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method, . Appl. Math. Comput., 267, 382–396, 2015. MR3399055
- Thomeé., V., Galerkin finite element methods for parabolic problems, . 2nd revised and expanded. Springer, Berlin, 2006. MR2249024
- Vlasák, M., Dolejší, V., HASH(0x231d550), Hájek., J., A priori error estimates of an extrapolated space time discontinuous Galerkin method for nonlinear convection-diffusion problems, . Numer. Methods Partial Differ. Equations, 27(6), 1453–1482, 2011. MR2838303
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.