Stability of ALE space-time discontinuous Galerkin method

Vlasák, Miloslav; Balázsová, Monika; Feistauer, Miloslav

  • Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 237-246

Abstract

top
We assume the heat equation in a time dependent domain, where the evolution of the domain is described by a given mapping. The problem is discretized by the discontinuous Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian (ALE) method. The sketch of the proof of the stability of the method is shown.

How to cite

top

Vlasák, Miloslav, Balázsová, Monika, and Feistauer, Miloslav. "Stability of ALE space-time discontinuous Galerkin method." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 237-246. <http://eudml.org/doc/294948>.

@inProceedings{Vlasák2017,
abstract = {We assume the heat equation in a time dependent domain, where the evolution of the domain is described by a given mapping. The problem is discretized by the discontinuous Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian (ALE) method. The sketch of the proof of the stability of the method is shown.},
author = {Vlasák, Miloslav, Balázsová, Monika, Feistauer, Miloslav},
booktitle = {Proceedings of Equadiff 14},
keywords = {ALE formulation, discontinuous Galerkin method, discrete characteristic function, stability},
location = {Bratislava},
pages = {237-246},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Stability of ALE space-time discontinuous Galerkin method},
url = {http://eudml.org/doc/294948},
year = {2017},
}

TY - CLSWK
AU - Vlasák, Miloslav
AU - Balázsová, Monika
AU - Feistauer, Miloslav
TI - Stability of ALE space-time discontinuous Galerkin method
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 237
EP - 246
AB - We assume the heat equation in a time dependent domain, where the evolution of the domain is described by a given mapping. The problem is discretized by the discontinuous Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian (ALE) method. The sketch of the proof of the stability of the method is shown.
KW - ALE formulation, discontinuous Galerkin method, discrete characteristic function, stability
UR - http://eudml.org/doc/294948
ER -

References

top
  1. Arnold, D. N., Brezzi, F., Cockburn, B., HASH(0x22e2088), Marini., L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, . SIAM J. Numer. Anal., 39(5), 1749–1779, 2002. MR1885715
  2. Balázsová, M., HASH(0x22f8290), Feistauer., M., On the stability of the space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains, . Appl. Math., 60, 501–526, 2015. MR3396478
  3. Balázsová, M., Feistauer, M., HASH(0x22f8cb0), Vlasák., M., Stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains, . (in preparation). MR3396478
  4. Boffi, D., Gastaldi, L., and, Heltai., L., Numerical stability of the finite element immersed boundary method, . Math. Models Methods Appl. Sci., 17, 1479–1505, 2007. MR2359913
  5. Bonito, A., Kyza, I., and, Nochetto., R. H., Time-discrete higher-order ALE formulations: Stability, . SIAM J. Numer. Anal., 51(1), 577–604, 2013. MR3033024
  6. Bonito, A., Kyza, I., and, Nochetto., R. H., Time-discrete higher order ALE formulations: a priori error analysis, . Numer. Math., 125, 225–257, 2013. MR3101828
  7. Česenek, J., Feistauer, M., Horáček, J., Kučera, V., HASH(0x22ffd00), Prokopová., J., Simulation of compressible viscous flow in time-dependent domains, . Appl. Math. Comput., 219, 7139–7150, 2013. MR3030556
  8. Česenek, J., Feistauer, M., HASH(0x2301ab8), Kosík., A., DGFEM for the analysis of airfoil vibrations induced by compressible flow, . Z. Angew. Math. Mech., 93 No. 6-7, 387–402, 2013. MR3069914
  9. Chrysafinos, K., HASH(0x23023b8), Walkington., N. J., Error estimates for the discontinuous Galerkin methods for parabolic equations, . SIAM J. Numer. Anal., 44, 349–366, 2006. MR2217386
  10. Cockburn, B., Karniadakis, G. E., HASH(0x2306760), Shu., C.-W., Discontinuous Galerkin methods, . In Lecture Notes in Computational Science and Engineering 11. Springer, Berlin, 2000. MR1842160
  11. Dolejší, V., Feistauer., M., Discontinuous Galerkin method, Analysis and applications to compressible flow, . Cham: Springer, 2015. MR3363720
  12. Ehle., B. L., On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems, . Research report CSRR 2010, Dept. AACS, Univ. of Waterloo, Ontario, Canada, 1969. MR2716012
  13. Formaggia, L., HASH(0x230ae50), Nobile., F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, . East-West J. Numer. Math., 7(2), 105–131, 1999. MR1699243
  14. Gastaldi., L., A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements, . East-West J. Numer. Math., 9(2), 123–156, 2001. MR1836870
  15. Guillo, A., HASH(0x230ece0), Soulé., J. L., La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation, . R.A.I.R.O., R-3, 17–44, 1969. MR0280008
  16. Hairer, E., Norsett, S. P., HASH(0x230f700), Wanner., G., Solving ordinary differential equations I, Nonstiff problems, . Number 8 in Springer Series in Computational Mathematics. Springer Verlag, 2000. MR1227985
  17. Hairer, E., Wanner., G., Solving ordinary differential equations II, Stiff and differential algebraic problems, . Springer Verlag, 2002. MR1439506
  18. Hirt, C. W., Amsdem, A. A., HASH(0x2311730), Cook., J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, . J. Comput. Phys., 135(2), 198–216, 1997. MR1486272
  19. Hughes, T. J. R., Liu, W. K., HASH(0x2314108), Zimmermann., T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, . Comput. Methods Appl. Mech. Eng., 29(3), 329–349, 1981. MR0659925
  20. Hulme., B. L., One step piecewise polynomial Galerkin methods for initial value problems, . Math. Comp., 26, 415–424, 1972. MR0321301
  21. Khadra, K., Angot, P., Parneix, S., HASH(0x23180b8), Caltagirone., J.-P., Fictitious domain approach for numerical modelling of Navier-Stokes equations, . Int. J. Numer. Methods Fluids, 34(8), 651–684, 2000. 
  22. Kosík, A., Feistauer, M., Hadrava, M., HASH(0x231a290), Horáček., J., Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method, . Appl. Math. Comput., 267, 382–396, 2015. MR3399055
  23. Thomeé., V., Galerkin finite element methods for parabolic problems, . 2nd revised and expanded. Springer, Berlin, 2006. MR2249024
  24. Vlasák, M., Dolejší, V., HASH(0x231d550), Hájek., J., A priori error estimates of an extrapolated space time discontinuous Galerkin method for nonlinear convection-diffusion problems, . Numer. Methods Partial Differ. Equations, 27(6), 1453–1482, 2011. MR2838303

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.