Quotient structures in lattice effect algebras

Amir Hossein Sharafi; Rajb Ali Borzooei

Kybernetika (2019)

  • Volume: 55, Issue: 5, page 879-895
  • ISSN: 0023-5954

Abstract

top
In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation.

How to cite

top

Sharafi, Amir Hossein, and Borzooei, Rajb Ali. "Quotient structures in lattice effect algebras." Kybernetika 55.5 (2019): 879-895. <http://eudml.org/doc/295061>.

@article{Sharafi2019,
abstract = {In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation.},
author = {Sharafi, Amir Hossein, Borzooei, Rajb Ali},
journal = {Kybernetika},
keywords = {Lattice effect algebra; CI-lattice; Sasaki arrow; (strong; fantastic; implicative; positive implicative) filter; Riesz ideal; D-ideal; MV-effect algebra; orthomodular lattice},
language = {eng},
number = {5},
pages = {879-895},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Quotient structures in lattice effect algebras},
url = {http://eudml.org/doc/295061},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Sharafi, Amir Hossein
AU - Borzooei, Rajb Ali
TI - Quotient structures in lattice effect algebras
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 5
SP - 879
EP - 895
AB - In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation.
LA - eng
KW - Lattice effect algebra; CI-lattice; Sasaki arrow; (strong; fantastic; implicative; positive implicative) filter; Riesz ideal; D-ideal; MV-effect algebra; orthomodular lattice
UR - http://eudml.org/doc/295061
ER -

References

top
  1. Avallone, A., Vitolo, P., 10.1023/a:1024458125510, Kluwer Academic Publishers 20 (2003), 1, 67-77. MR1993411DOI10.1023/a:1024458125510
  2. Bennett, M. K., Foulis, D. J., 10.1007/bf02057883, Found. Physics 25 (1995), 12, 1699-1722. MR1377109DOI10.1007/bf02057883
  3. Borzooei, R. A., Dvurečenskij, A., Sharafi, A. H., 10.1016/j.ins.2017.12.049, Inform. Sci. 433-434 (2018), 233-240. MR3759022DOI10.1016/j.ins.2017.12.049
  4. Borzooei, R. A., Shoar, S. Khosravi, Ameri, R., 10.1016/j.fss.2011.09.001, Fuzzy Sets Systems 187 (2012), 1, 92-102. MR2851998DOI10.1016/j.fss.2011.09.001
  5. Chajda, I., Halaš, R., Kühr, J., 10.1007/s00012-008-2086-9, Algebra Univers. 60 (2009), 1, 63-90. MR2480632DOI10.1007/s00012-008-2086-9
  6. Dvurečenskij, A., Pulmannová, S., 10.1007/978-94-017-2422-7, Springer Netherlands, 2000. Zbl0987.81005MR1861369DOI10.1007/978-94-017-2422-7
  7. Farahani, H., Zahiri, O., Algebraic view of MTL-filters., Ann. Univ. Craiova 40 (2013), 1, 34-44. MR3078957
  8. Foulis, D. J., 10.1023/a:1026454318245, Found. Physics 30 (2000), 10, 1687-1706. MR1810197DOI10.1023/a:1026454318245
  9. Foulis, D. J., Bennett, M. K., 10.1007/bf02283036, Found. Physics 24 (1994), 10, 1331-1352. Zbl1213.06004MR1304942DOI10.1007/bf02283036
  10. Foulis, D. J., Pulmannová, S., 10.1007/s11225-012-9454-3, Studia Logica 100 (2012), 6, 1291-1315. MR3001058DOI10.1007/s11225-012-9454-3
  11. Haveshki, M., Saeid, A. Borumand, Eslami, E., 10.1007/s00500-005-0534-4, Soft Computing 10 (2006), 8, 657-664. DOI10.1007/s00500-005-0534-4
  12. Jenča, G., Marinová, I., Riečanová, Z., Central elements, blocks and sharp elements of lattice effect algebras., In: Proc. Third Seminar Fuzzy Sets and Quantum Structures 2002, pp. 28-33. 
  13. Jenča, G., Pulmannová, S., 10.1007/s005000100139, Soft Computing 5 (2001), 5, 376-380. DOI10.1007/s005000100139
  14. Cignoli, R., D'Ottaviano, I. M. L., Mundici, D., 10.1007/978-94-015-9480-6, Springer Science and Business Media, 2000. Zbl0937.06009MR1786097DOI10.1007/978-94-015-9480-6
  15. Pulmannová, S., Vinceková, E., Congruences and ideals in lattice effect algebras as basic algebras., Kybernetika 45 (2009), 6, 1030-1039. MR2650081
  16. Rad, S. Rafiee, Sharafi, A. H., Smets, S., 10.1007/s10773-019-04074-y, Int. J. Theoret. Physics (2019). DOI10.1007/s10773-019-04074-y
  17. Riečanová, Z., 10.1023/a:1003619806024, Int. J. Theoret. Physics 39 (2000), 2, 231-237. MR1762594DOI10.1023/a:1003619806024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.