A note on certain Tannakian group schemes

Sanjay Amrutiya

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 1, page 21-29
  • ISSN: 0044-8753

Abstract

top
In this note, we prove that the F -fundamental group scheme is a birational invariant for smooth projective varieties. We prove that the F -fundamental group scheme is naturally a quotient of the Nori fundamental group scheme. For elliptic curves, it turns out that the F -fundamental group scheme and the Nori fundamental group scheme coincide. We also consider an extension of the Nori fundamental group scheme in positive characteristic using semi-essentially finite vector bundles, and prove that in this way, we do not get a non-trivial extension of the Nori fundamental group scheme for elliptic curves, unlike in characteristic zero.

How to cite

top

Amrutiya, Sanjay. "A note on certain Tannakian group schemes." Archivum Mathematicum 056.1 (2020): 21-29. <http://eudml.org/doc/295086>.

@article{Amrutiya2020,
abstract = {In this note, we prove that the $F$-fundamental group scheme is a birational invariant for smooth projective varieties. We prove that the $F$-fundamental group scheme is naturally a quotient of the Nori fundamental group scheme. For elliptic curves, it turns out that the $F$-fundamental group scheme and the Nori fundamental group scheme coincide. We also consider an extension of the Nori fundamental group scheme in positive characteristic using semi-essentially finite vector bundles, and prove that in this way, we do not get a non-trivial extension of the Nori fundamental group scheme for elliptic curves, unlike in characteristic zero.},
author = {Amrutiya, Sanjay},
journal = {Archivum Mathematicum},
keywords = {F-fundamental group scheme; Frobenius-finite Vector bundles},
language = {eng},
number = {1},
pages = {21-29},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on certain Tannakian group schemes},
url = {http://eudml.org/doc/295086},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Amrutiya, Sanjay
TI - A note on certain Tannakian group schemes
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 1
SP - 21
EP - 29
AB - In this note, we prove that the $F$-fundamental group scheme is a birational invariant for smooth projective varieties. We prove that the $F$-fundamental group scheme is naturally a quotient of the Nori fundamental group scheme. For elliptic curves, it turns out that the $F$-fundamental group scheme and the Nori fundamental group scheme coincide. We also consider an extension of the Nori fundamental group scheme in positive characteristic using semi-essentially finite vector bundles, and prove that in this way, we do not get a non-trivial extension of the Nori fundamental group scheme for elliptic curves, unlike in characteristic zero.
LA - eng
KW - F-fundamental group scheme; Frobenius-finite Vector bundles
UR - http://eudml.org/doc/295086
ER -

References

top
  1. Amrutiya, S., Biswas, I., 10.1016/j.bulsci.2009.12.002, Bull. Sci. Math. 34 (2010), 461–474. (2010) MR2665455DOI10.1016/j.bulsci.2009.12.002
  2. Atiyah, M.F., Vector bundles over an elliptic curve, Proc. London Math. Soc. 3 (1957), 414–452. (1957) MR0131423
  3. Biswas, I., Ducrohet, L., 10.1016/j.crma.2007.10.010, C. R. Acad. Sci. Paris, Ser. I 345 (2007), 495–497. (2007) MR2375109DOI10.1016/j.crma.2007.10.010
  4. Biswas, I., Holla, Y., 10.1090/S1056-3911-07-00449-3, J. Algebraic Geom. 16 (2007), 547–597. (2007) MR2306280DOI10.1090/S1056-3911-07-00449-3
  5. Biswas, I., Parameswaran, A.J., Subramanian, S., Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J. 132 (2006), 1–48. (2006) MR2219253
  6. Deligne, P., Milne, J.S., 10.1007/978-3-540-38955-2, Hodge cycles, motives and Shimura varieties, Lecture Notes in Math, vol. 900, Springer–Verlag, Berlin–Heidelberg–New York, 1982. (1982) MR0654325DOI10.1007/978-3-540-38955-2
  7. Hogadi, A., Mehta, V.B., 10.4310/PAMQ.2011.v7.n4.a12, Pure Appl. Math. Q. 7 (4) (2011), 1361–1369, Special Issue: In memory of Eckart Viehweg. (2011) MR2918164DOI10.4310/PAMQ.2011.v7.n4.a12
  8. Ishimura, S., 10.1215/kjm/1250521611, J. Math. Kyoto Univ. 23 (1983), 73–83. (1983) MR0692730DOI10.1215/kjm/1250521611
  9. Lange, H., Stuhler, U., 10.1007/BF01215129, Math. Z. 156 (1977), 73–83. (1977) MR0472827DOI10.1007/BF01215129
  10. Langer, A., 10.4007/annals.2004.159.251, Ann. of Math. 159 (2004), 251–276. (2004) MR2051393DOI10.4007/annals.2004.159.251
  11. Langer, A., 10.5802/aif.2667, Ann. Inst. Fourier (Grenoble) 61 (5) (2011), 2077–2119. (2011) MR2961849DOI10.5802/aif.2667
  12. Lekaus, S., 10.1016/S1631-073X(02)02478-0, C. R. Math. Acad. Sci. Paris 335 (2002), 351–354. (2002) MR1931515DOI10.1016/S1631-073X(02)02478-0
  13. Nori, M.V., 10.1007/BF02967978, Proc. Indian Acad. Sci. Math. Sci. 91 (2) (1982), 73–122. (1982) MR0682517DOI10.1007/BF02967978
  14. Oda, T., 10.1017/S0027763000014367, Nagoya Math. J. 43 (1971), 41–72. (1971) MR0318151DOI10.1017/S0027763000014367
  15. Otabe, S., 10.1080/00927872.2016.1236936, Comm. Algebra 45 (2017), 3422–3448. (2017) MR3609350DOI10.1080/00927872.2016.1236936

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.