A note on certain Tannakian group schemes
Archivum Mathematicum (2020)
- Volume: 056, Issue: 1, page 21-29
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAmrutiya, Sanjay. "A note on certain Tannakian group schemes." Archivum Mathematicum 056.1 (2020): 21-29. <http://eudml.org/doc/295086>.
@article{Amrutiya2020,
abstract = {In this note, we prove that the $F$-fundamental group scheme is a birational invariant for smooth projective varieties. We prove that the $F$-fundamental group scheme is naturally a quotient of the Nori fundamental group scheme. For elliptic curves, it turns out that the $F$-fundamental group scheme and the Nori fundamental group scheme coincide. We also consider an extension of the Nori fundamental group scheme in positive characteristic using semi-essentially finite vector bundles, and prove that in this way, we do not get a non-trivial extension of the Nori fundamental group scheme for elliptic curves, unlike in characteristic zero.},
author = {Amrutiya, Sanjay},
journal = {Archivum Mathematicum},
keywords = {F-fundamental group scheme; Frobenius-finite Vector bundles},
language = {eng},
number = {1},
pages = {21-29},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on certain Tannakian group schemes},
url = {http://eudml.org/doc/295086},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Amrutiya, Sanjay
TI - A note on certain Tannakian group schemes
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 1
SP - 21
EP - 29
AB - In this note, we prove that the $F$-fundamental group scheme is a birational invariant for smooth projective varieties. We prove that the $F$-fundamental group scheme is naturally a quotient of the Nori fundamental group scheme. For elliptic curves, it turns out that the $F$-fundamental group scheme and the Nori fundamental group scheme coincide. We also consider an extension of the Nori fundamental group scheme in positive characteristic using semi-essentially finite vector bundles, and prove that in this way, we do not get a non-trivial extension of the Nori fundamental group scheme for elliptic curves, unlike in characteristic zero.
LA - eng
KW - F-fundamental group scheme; Frobenius-finite Vector bundles
UR - http://eudml.org/doc/295086
ER -
References
top- Amrutiya, S., Biswas, I., 10.1016/j.bulsci.2009.12.002, Bull. Sci. Math. 34 (2010), 461–474. (2010) MR2665455DOI10.1016/j.bulsci.2009.12.002
- Atiyah, M.F., Vector bundles over an elliptic curve, Proc. London Math. Soc. 3 (1957), 414–452. (1957) MR0131423
- Biswas, I., Ducrohet, L., 10.1016/j.crma.2007.10.010, C. R. Acad. Sci. Paris, Ser. I 345 (2007), 495–497. (2007) MR2375109DOI10.1016/j.crma.2007.10.010
- Biswas, I., Holla, Y., 10.1090/S1056-3911-07-00449-3, J. Algebraic Geom. 16 (2007), 547–597. (2007) MR2306280DOI10.1090/S1056-3911-07-00449-3
- Biswas, I., Parameswaran, A.J., Subramanian, S., Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J. 132 (2006), 1–48. (2006) MR2219253
- Deligne, P., Milne, J.S., 10.1007/978-3-540-38955-2, Hodge cycles, motives and Shimura varieties, Lecture Notes in Math, vol. 900, Springer–Verlag, Berlin–Heidelberg–New York, 1982. (1982) MR0654325DOI10.1007/978-3-540-38955-2
- Hogadi, A., Mehta, V.B., 10.4310/PAMQ.2011.v7.n4.a12, Pure Appl. Math. Q. 7 (4) (2011), 1361–1369, Special Issue: In memory of Eckart Viehweg. (2011) MR2918164DOI10.4310/PAMQ.2011.v7.n4.a12
- Ishimura, S., 10.1215/kjm/1250521611, J. Math. Kyoto Univ. 23 (1983), 73–83. (1983) MR0692730DOI10.1215/kjm/1250521611
- Lange, H., Stuhler, U., 10.1007/BF01215129, Math. Z. 156 (1977), 73–83. (1977) MR0472827DOI10.1007/BF01215129
- Langer, A., 10.4007/annals.2004.159.251, Ann. of Math. 159 (2004), 251–276. (2004) MR2051393DOI10.4007/annals.2004.159.251
- Langer, A., 10.5802/aif.2667, Ann. Inst. Fourier (Grenoble) 61 (5) (2011), 2077–2119. (2011) MR2961849DOI10.5802/aif.2667
- Lekaus, S., 10.1016/S1631-073X(02)02478-0, C. R. Math. Acad. Sci. Paris 335 (2002), 351–354. (2002) MR1931515DOI10.1016/S1631-073X(02)02478-0
- Nori, M.V., 10.1007/BF02967978, Proc. Indian Acad. Sci. Math. Sci. 91 (2) (1982), 73–122. (1982) MR0682517DOI10.1007/BF02967978
- Oda, T., 10.1017/S0027763000014367, Nagoya Math. J. 43 (1971), 41–72. (1971) MR0318151DOI10.1017/S0027763000014367
- Otabe, S., 10.1080/00927872.2016.1236936, Comm. Algebra 45 (2017), 3422–3448. (2017) MR3609350DOI10.1080/00927872.2016.1236936
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.